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PROBLEM STATEMENT
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A hands-free speech recognition system and a
hands-free telecommunication system are essential
for realizing an unconstrained, and stress-free
human-machine interface. In real acoustic
environments, however, the speech recognition
performance and speech recording performance are
significantly degraded because one cannot detect
the user’s speech with a reasonable signal strength
(high signal-to-noise ratio (SNR)) owing to the
interference signals such as noise.

A blind speech processing, free from prior
weakness, 1s particularly in demand in our
communication systems.

Such process should be able to adapt to different
conditions; Linear and Non-linear.
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Main Objective

The main objective of this paper i1s to simulate BSS system model
using Independent Component Analysis and optimized with
Radial Basis Function network ICA-RBF. The system will be
based on the output sources signals, sensor signals as well as
some prior knowledge of the mixing system.

Specific Objectives

Analysis of ICA methods based on Information theory using
statistical SP.

To simulate the performance of neural based BSS artificial neural
network (ANN) model for optimal results by harnessing the
power and parallel structure of neural networks and multi-core
processors. A property proposed to suit multi-channel blind source
separation system.

Compare the performance of the proposed technique based on
signal separation strength ratios with reference to already
popular BSS method and then draw conclusions on proposed ICA-
RBF Network system based on the attained performance indices.
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INTRODUCTION TO BLIND SYSTEMS.
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INDEPENDENT COMPONENT ANALYSIS
ICA IN MEDICAL FIELD 1:6 OF
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JUSTIFICATION OF THE STUDY

Blind signal processing 1s one of the emerging
researchable areas in digital signal processing (DSP).
Diverse application of BSS include recording and
relaying multiple speech sources, satellite-mobile
systems, and medical diagnosis of fetal heart rate
(FHR), and maternal electrocardiogram (MECG) in
fetal electrocardiogram extraction (FECGQG).

Especially in Teleconferencing there have been efforts
put 1in place to improve the acoustic environment to
satisfy the users, but generally, these environments
are acoustically challenging with lots of hard surfaces
like plaster, glass, wooden walls, hard ceilings, boxy,
square rooms with no curtains or other softeners. All
these things make audio systems strain to avoid
picking up heavy interferences.



CONT.

To enhance efficient multichannel
communication, there 1s need to come up with a
efficient, cost effective blind source system. This
research aims to model one such system using
neural networks.

Artificial neural networks consist of numerous,
simple processing units or “neurons” that we can
globally program for computation. We can
program or train neural networks to store,
recognize and associatively retrieve patterns or
database entries to solve combinatorial
optimization problems, to filter noise from
measurement data, to control 1ill-conditioned
problem, 1n summary, to estimate sampled
functions when we do not know the form of the
functions.



BLIND SOURCE SYSTEMS

Non-linear mixtures
Consider an x,(#) =1{ x,(?), x,(t), . .. x,(1)} T 1)
The signal 1s non-linear memoryless mixture 1if it can be
written as x;(2) = T{a; *x, (1) + a,*,(t) + az¥c;(t), ..., +
a, *x (1)} where the mapping T consisting of the functions
f;1s an unkown differentiable bijective mapping
from one subset to another.

Taking away the time dependence variable the model will
become;

x = Z() )
The question is: Is it possible to use signal processing to
recover the sources s from the non-linear mixtures (2)?



CONT.

Results for Linear mixtures
For linear mixtures (2) be comes;
x = As 3)
where A is square non-linear mixing matrix. And therefore

the source separation then of estimatating the non—singular
matrix A is

y = B(x) = BA(s) 4



BLIND SOURCE SEPARATION BSS MODEL FOR
SPEECH SIGNALS.

O Is a term used to describe the method of extrication (dis-
connecting or dis-engaging)of underlying source signals
from a set of observed signal mixture with little or no
information as to the nature of those source signals.




INDEPENDENT COMPONENT ANALYSIS ICA

MODEL
X;(0) = a;*s (D) T ap™s,(0) T a;3™s;5(0) + 2,™s,(0)

Here, 1=1:4.
In vector-matrix notation, and dropping index t, this is
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METHODS THAT HAVE BEEN FRONTED

Matching pursuit- MP
Principle Component Analysis- PCA
Sparse Decompositions

Independent Component Analysis- ICA



METHODOLOGY{THE MIXING AND DE-
MIXING MODEL}

S X

The RBF neural network output layer 1s represented as, y=y
(WD).

Where y (*) 1s a sigmoid function, W= (w;, w,..., w,). By
choosing a good on-line training algorithm having a good
number of hidden computational units A,

y=y (W®) =y (W @ (x,p,0))=s.



ASSUMPTIONS TO BSS

Statistically independent source signal

High Kurtosis (High — order signal- 274 and 4™ orders)

Ergodic (Stationary).... Convolved(Differentiable between)
Therefore we will come with a signal processing
technique to extract pertinent information from random
signals using very little priort knowledge with aid of the

above assumptions. This can be called signal estimation

or filtering.



SIGNAL ESTIMATION

Estimation can be thought of a procedure made up
of three primary parts:-

Criterion Function

Model
Simulation of the proposed algorithm.



BSS - ICA

Entropy 1s related to independence and since
independence can not be measured but entropy
can, we apply this tool in our method. Entropy of
signal mixtures 1s constant and by mapping these
signals maximizes this independence
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ANALYSIS OF A SIMPLE AUDIO SIGNAL

A Sample Audio signal
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Cumulative probability

THE CDF AND PDF OF THE SAMPLE
SIGNAL

—

— —
[=x] [=u]

=
i,

I
Y data

...........................................................................

Density

= == ] =% = [S4] [=3] =] Lus) o
T T T T T T =

---------------------------------------------------------------------------

anmnnnﬂﬂﬂw

wﬂﬂﬂﬂﬂmnnﬂm«ﬂ”

=
[=1 [

0 01 02 03 04 05 06 07 08 09 1 Data

i i i i i i L] i 0 01 02 03 04 05 06 07 08 09 1

Data




NON-LINEAR FUNCTIONS FOR BSS

The non-linear function should be judiciously
selected to deal with the super-Gaussian, sub-
Gaussian, stationary and non-stationary signals.
The non-linear functions should be monotonic
and 1invertible. The popular non-linearities used
are logistic function and hyperbolic tangent
function

Y = g(y) = tanh (y)



Hyperbolic Tangent Derivative

Hyperbolic Tangent

1—tanh’(y)
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NONE-LINEAR MAPPING RELATIONS
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CALCULATING WEIGHTS BY MAXIMUM ENTROPY ME

Developed from Bell A. J and Sejnowski T. J
“Information maximization approach Algorithm” called

entropy to generate weights for RBF. The training of RBF
with linear dependence on the output layer weights and non-
linearity introduced in the input help to address the problem
of local minima. The extracted signals y are obtained from
signal mixtures x by optimizing the unmixing matrix W

The differential entropv of a signal is given by;

N
H(Y) = H{x)—I—E|:Z]np‘,-[}',}j|+]n“',

i=1

N
hy) = E[Zlng’(r,)}rln IW].
=1



CONT.

This 1s the entropy associated with mapping of x
to Y.

Optimal matrix W 1s found using Gradient
Descent on h by iteratively adjusting W 1n order
to maximize the function h.

Gradient Entropy

By partial derivative of the entropy expression
AbOVe; dh |: N o9 ]ng’{}',)i| 4 d In |W|

IW;;

. Z OW;

i=1



CONT.
Vi =W-T LE [w(y; xT]*

Thus the gradient descent rule, which in i1ts most
general form 1s

Wiew = Wola + I}Vh.



WHY MAXIMUM ENTROPY?

While the assumption that the source signals are
independent, independence of signals cannot be
measured, entropy can.

Entropy 1s related to independence in that
maximum entropy implies independent signals.
Therefore the objective of “Machine intelligent
RBF” of mimicking the real world of a hybrid of
linearity and non-linearity is easily attained by
using the unmixing matrix W that is related to
ME 1n the extracted signals, to train it



RBF NETWORK

A function 1s approximated as a linear combination of
radial basis functions ( : capture local
behaviour of functions.

Much of the inspiration for RBF networks has come
from traditional statistical pattern classification
techniques { Cover’s Theorem }



CONT.

output layer

input layer
Input lay (linear weighted sum)

(fan-out)

hidden layer
(weights correspond to cluster centre,
output function usually Gaussian)



CONT.

For an n-output and n-output RBF network model. It consist
three layers;

input layer
hidden layer
output layer

The neurons in hidden layer are of local response to its input
and called RBF neurons while the neurons of the output layer
only sum their inputs and are called linear neurons. The RBF
network of Fig. above is often used to approximate an unknown
continuous function which can be described by ¢: R?----> R ”
the mapping

y(x) = WK(x, p)

where W = w . 1s a 7 x M weight matrix of the output layer, K(x,
p) 1s a kernel function vector of the RBF network consisting of
local functions.



CONT.

K(x, p) can be represented as K(r) takes one of the sevearl
forms such as

Linear, cubic, thin plate spline, Gaussian, multiquatradic or
inverse multiquatradic.

For the proposed separating model we choose the
conventional Gaussian kernel as activation of RBF
neurons and it becomes:-



(GAUSSIAN ACTIVATION KERNEL FOR

RBF (NON-SUPERVISED AND SUPERVISED)
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THE SCOPE OF WORK TO BE DONE.

— ICA 1 RBF [ ——

X £ R™o X; £ R™

Designing a RBF with appropriate number of
input, hidden and output units.

Training RBF with the Weights related to ME as

Check the performance level attained by this
method as related to BSS, by using a good
performance 1index esp after applying the
following sample communication signal Polar

NRZ

Conclusion.



A SAMPLE COMMUNICATION SIGNAL
MODEL: -(WAY FORWARD)

Once 1t 1s determined that RBF neural network
analysis through Infomax Algorithm was fairly
reliable for a number of signal, it is to be tested
on a simple communication signal, the polar non-
return to zero signal [11]. Digital baseband
signals often use line codes to provide particular
spectral characteristics of pulse train [15]. The
most common codes used for mobile
communication 1s polar non-return-to-zero NRZ
because it offers simple synchronization
capabilities. The modelling of the pdf which
require a unit kronecker delta proofed difficult
and we had to configure it as shown in Figures
below.



Polar non-return to zero

Polar NRZ Signal

Figure Sample polar NRZ signal.




CDF AND PDF OF POLAR NRZ

Polar NRZ Cumulative Distribution Function (cdf)
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EXPECTED RESULTS

o Improved signal separation and strength.

Signal 2

Signal 1
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TABULATED RESULST:

Table 1: Caze 1 -Two Source Signal and Case 2 -Four Source Zignals.

SDR in (dB) SIR in (dB) SARin (dB) SDR in (dB) SIR in (dB)
ICA |RBFN | ICA |RBFN | ICA | RBFN | ICA | RBFN | ICA | REBFN
21 44.7 477 434 434 | 23806 2290 13.3 13.3 130 13.3
82 421 421 41.0 410 2445 2526 43 49 43 49
83 2394 2212 26.5 26.5 26.5 239
=4 2423 2276 6.9 6.9 6.8 710




TABULATED RESULTS CONTD.

Table 2: Case 5 Three NRZ Souwsce Sigrnal Estimation with Linesr Dlixtizce.

SAR in dB SDR in dB SIR in dB
Sources ICA RBFIN ICA RBFIY ICA BEBFIN
Eignalsl
51 244 4 2459 21.6 56.1 25.6 521
82 247 3 239.6 41.3 345 44 5 375
=3 228.0 2337 19.6 G684 394 GE. 4

Tzble 3: Case 4: Three NRZ Source Signal Estimation with Non-linesr MMizhare.

SAR in dB SDR in dB =IR in dB
Sources ICA RBFIN ICA RBFIN ICA RBFIN
signals
81 2341 235.1 4.1 6.7 4.1 6.7
82 2211 2255 T2 T3 7.2 74
83 2321 218.8 28.9 574 257 374




THE END

THANK YOU









INDEPEDENCE OF THE COMPONENTS
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Problem

Camera vision as an image analysis and
interpretation problem.

At low level is image pixel or feature
labelling

At high level is a contextual recognition and
representation problem

Problem summary.
Object identification and recognition
Depth from 2D — Visual Ranging
Spartial localization — Visual Tracking
Processing Latencies — Computational speed

Automated Adaptability to different conditions ¢



(GOALS AND OBJECTIVES
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Main Objective
To overcome critical limitations inherent in monocular
vision.

Specific Objectives

To Develop algorithm for visual tracking and ranging of road
and objects employing virtual cameras, correlation
techniques, Markov random fields and adaptive template
updating mechanism.

Optimize the adaptability and processing speed through
modularization, parallelization and multithreading algorithm
harnessing the power and parallel structure of neural
networks and multi—core processors.



JUSTIFICATION OF THE STUDY

L L@ttf)al:hgve been done on Monocular vision

Stereo vision to date put less emphasis on real-
time processing

Promise of high computational speeds

Promise of a more robust and adaptive vision
system

Application on a driver assistance system (DAS).

Application on other camera vision or surveillance
systems



SCOPE

[: 6 Qﬁg(ﬁithm development and deployment in C
code targeting FPGA

Road features recognition and representation

Front end vision.

Straight road sections and long curved
sections

u{l



VISUAL TRACKING
LIyi fkePBnPial Digital Image Trackers

Particle filter or condensation based
tracker

Active contours tracker

Mean shift tracker

Integral histogram based tracker
Covariance tracker

Edge tracker

Centroid tracker

|

CoriC
COI‘I z("{ij — I; )(11‘; j;—")
\/Z Tij — Tj) I;j —.T‘.if\}g

orrelation C




VISUAL RANGING
Applieationg)p G

Saxena et al. Estimated 1-D distances for driving a
remote control car autonomously

Nagai et al. performed Surface reconstruction from
single images

o Gini & Marchi used single—camera vision to drive an
indoor robot
Methods

o Range from stereo

Range from vergence

Range from focus/ Defocus
Affine structures

Shape from shading

O O O O O

Supervised training by Markov Random Fields (MRE)

Neural Net MRF/CRF method utilizing Perspective concept and
Geometrical transformation



VIRTUAL CAMERAS

| Birdd Hyfe-View (Flat world Model)
(Wallace R., 1986) (Lotufo R., 1990)

Virtual Cameras
(Todd, 1994)

Actuz]l Camera View

Virtual Camera Views



VERTICAL SECTION VIRTUAL CAMERA VIEWS

Virtual camera Concept Tracking

the Road, depth and the Dbjects

Wiyl Camers 3
-—-_-_h F'!r

Virbusl {amera J

rbcal Camera L

e Correlation techniques i1s used in Road and objects
segmentation.

e Mavlraxr Randam Fhinldc 11and 11 1mnifializatinn Anf+ha xvrmwrtiial




COMPUTATIONAL SPEED (LATENCIES) I1:

D. @Erddl based algorithms (Kernel RBN and SVM )

(Vapnik, 1995)

- Pulse—coupled Neural networks
( Kinser and Lindblad, 2005)

- Multiple classifier algorithms
(Many literals)

- Binary Neural Networks
(Austin 1996)

- Sub—sampling and distributed computing
(ALVINN Project)

- Modular Neural networks
(Evangelia and Cooley, 2000) (Schmidt, 1996)




AUTOMATED ADAPTABILITY

I-I Ad%p(%]i:vg Road Detection Using Neural

Networks

akeuch1 2004):

sky

adjacent adjacent
I

road

*Discriminated learning of the road features ‘

only
{Correlation Method} ¢




METHODOLOGY
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Data Collection
Data Analysis

Algorithm development and
evaluation

Algorithm Optimization and
evaluation

Deployment in Fixed point C code &
Evaluations

u{l



DATA COLLECTION
I[11: 2 oF 12

Real Road Driving
video recording

*Video frames binned
along Vehicle
speed




DATA ANALYSIS (MATLAB & F#)
I1I: 3 oF 12

o Color Histogram indexing method
o Wavelets methods

o Watershed methods

0 K-Means clustering methods

o Morphological processing

o Filters (Noise reduction, Edge
enhancement)

o Hough transforms

Matlab Interactive Kit

N

F# For Visualization 4}




ROAD SEGMENTATION ~ALGORITHM DEV.
Mbddle14 OF 12

» Image preprocessing
algorithms

» Edge enhancing algorithms
e Correlation algorithm

o Template updating
algorithm

Correlation Surface 4}




VIRTUAL CAMERAS ALGORITHM DEV. I11:
Moguler2 12 il

Objects lower edge node
1dentification

Virtual cameras window
1nitialization
Windows Normalization

Ranging algorithm

Selecting Best Base line using



RECOGNITION ALGORITHM DEV.

Mbddie 30 OF 12

» Recognition algorithm
* Output Representation

» Feed Forward Neural
network

» Hidden Markov Models

Label




OPTIMIZATION & DEPLOYMENT

Optithizatifn O 12

o Modularization

o Parallelization
o Vectorization
o Multithreading or Pipelining

o Fixed Point C code deployment
and evaluations

o Every module will be evaluated
on Speed and Accuracy (Errors)




PROPOSED DESIGN
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TARGET APPLICATION

I :[ | Vision Based Driver Assistance System

( i

Cantroller Sutput Signal to CAN Bus

e P|erceﬂtion Based Controller
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CONTRIBUTIONS OF THE STUDY

[TI:

10 oF 12

Vertical virtual cameras concept
Ranging in 2D images
Computational speed acceleration
Neural Net MRF Models

Neural Net Correlation Function
Road sensor for car vision



REQUIREMENTS
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No. |Particulars Estimated
Cost (Kshs.)

1 DCAM camera Hire 10,000

2 Car Hire and Fuelling 10,000
Documentation, printing,

2 photocopies & any other 15,000
stationery

3 Text Books 25,000

Electronic journals and

4 15,000

Internet
Total cost 75,000



WORK SCHEDULE
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2010 |2010 (2010 ({2010 [2010 |[2011 |2011 {2011 |2011
Literature
review -------

Proposal

conception and

drafting of the

proposal

]

defending

HEE
L

simulation
Thesis writing






