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Abstract 

This book is an introduction to the art of software engineering. It is intended to be 

used as a textbook for an undergraduate level course. 

When teaching software engineering courses, it is highly important to have good 

text books that are well-founded, up-to-date, and easily accessible for students. 

However currently, the available text books in the market are either very broad or 

highly specialized, making it hard for students to select appropriate books for 

specific software engineering courses. 

Software engineering is also about communication. Teams do not consist only of 

developers, but also of testers, architects, system engineers, customers, and project 

managers. Software projects can be so large that we have to do careful planning. 

Implementation is no longer just about writing codes, but it is also about following 

guidelines, writing documentation and writing unit tests. All of these different 

pieces have to fit together and we have to be able to spot problematic areas using 

metrics. 

This will enable us to know whether the codes follow certain standards. 

This is reflected from the fact that once we have finished the coding, we must 

complete other tasks before concluding the project. 

A clear example is large projects maintaining software which can keep many 

people on their toes. There are so many factors influencing the success or failure of 

a project, thus we need to acquire knowledge about good management skills. And 

last but not the least, a good software engineer, like any engineer, needs tools 

which are gained through knowledge. 

In this book, it briefly explains and discusses an approach of using a web-based 

system for creating collaborative and peer-reviewed text books that can be 

customized individually for specific courses. 
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