

Software Engineering

The Basics of Software Development

Acknowledgments

I would like to express my deepest appreciation to the Almighty God for his

everlasting love and blessings. This book would have remained a dream had it not

been for him.

I cannot find words to express my gratitude to all my best friends who have always

supported me, and incented me to strive towards my goal.

In addition, a special thanks to Rev. Prof. Jones Kaleli (Vice Chancellor,

Kabarak University) for his guidance and motivational support which has

inspired me to achieve this productive result.

Dedication

This book is dedicated to My Dearest Late Mother who has been a great rock of

stability throughout all these years of my life.

Abstract

This book is an introduction to the art of software engineering. It is intended to be

used as a textbook for an undergraduate level course.

When teaching software engineering courses, it is highly important to have good

text books that are well-founded, up-to-date, and easily accessible for students.

However currently, the available text books in the market are either very broad or

highly specialized, making it hard for students to select appropriate books for

specific software engineering courses.

Software engineering is also about communication. Teams do not consist only of

developers, but also of testers, architects, system engineers, customers, and project

managers. Software projects can be so large that we have to do careful planning.

Implementation is no longer just about writing codes, but it is also about following

guidelines, writing documentation and writing unit tests. All of these different

pieces have to fit together and we have to be able to spot problematic areas using

metrics.

This will enable us to know whether the codes follow certain standards.

This is reflected from the fact that once we have finished the coding, we must

complete other tasks before concluding the project.

A clear example is large projects maintaining software which can keep many

people on their toes. There are so many factors influencing the success or failure of

a project, thus we need to acquire knowledge about good management skills. And

last but not the least, a good software engineer, like any engineer, needs tools

which are gained through knowledge.

In this book, it briefly explains and discusses an approach of using a web-based

system for creating collaborative and peer-reviewed text books that can be

customized individually for specific courses.

Contexts Page No

Chapter 1 1

1.1 Introduction to Software Engineering 2

1.2 Software Crisis 2

1.3 Various Contributing Factors/Reasons Responsible for Software Crisis

 3

1.4 Differences between Software Engineering and Traditional Engineering.

 4

1.5 Goals/ Objective of Software Engineering 4

1.6 Principles of Software Engineering 5

1.7 Process of Software System Development 8

1.7.1 Phased Development Process 8

1.7.2 Software Development Life Cycle 8

1.8 Software Engineering Models/Paradigm 15

1.8.1 Waterfall model 15

1.8.2 Prototype Model 17

1.8.3 Iterative Enhancement Model 19

1.8.4 Spiral Model 21

Chapter 2 24

2.1 Introduction 25

2.2 Planning a Software Project 25

2.3 Software Cost Estimation 26

2.4 COCOMO Model 30

2.5 Project Scheduling 33

2.5.1 Basic Principles of Software Project Scheduling 33

2.5.2 Project Scheduling Activities 34

2.5.3 Software Project Scheduling Techniques 34

2.6 Personnel Planning. 38

2.7 Team Structures 38

2.8 Software Configuration Management 41

2.9 Software Quality and Quality Assurance 43

2.10 Risk Management 45

Chapter 3 49

3.1 Introduction 50

3.2 Software Requirement Analysis 50

3.3 Structured Analysis 51

3.3.1 Data Flow Diagram (DFD) 52

3.3.1.1 Symbols used for Constructing DFDs 53

3.3.1.2 Guidelines for developing DFD 55

3.3.1.3 Context Diagram 55

3.3.1.4 Detailed level DFD 55

3.3.2 Data Dictionary 56

3.3.2.1 Need for a Data Dictionary 56

3.3.2.2 Components of Data Dictionary 57

3.3.2.3 Advantage of data dictionary 59

3.3.2.4 Disadvantages of Data Dictionary 59

3.4 Object Oriented Analysis 60

3.5 Software Requirement Specification (SRS) 62

3.6 SRS Validation 65

Chapter 4 67

4.1 Introduction 68

4.2 Software Design Fundamentals 68

4.3 Software Design Principles 69

4.4 Modularity 72

4.5 Structured Design Methodology 78

4.5.1 Structured Chart 79

4.6 Object Oriented Design Methodology 82

4.7 Design Verification 83

Chapter 5 85

5.1 Introduction 86

5.2 Programming Style 86

5.3 Structured Programming 90

5.4 Documentation 93

5.5 Verification and Validation (V & V) 95

5.6 Monitoring and Control 98

Chapter 6 100

6.1 Introduction 101

6.2 Need of Software Metrics 101

6.3 Benefits of Software Metrics 102

6.4 Size Metrics 102

6.5 Control Complexity Metrics 104

6.6 Object Oriented Metrics 106

Chapter 7 108

7.1 Software Reliability 109

7.2 Error, Faults and Failures 110

7.3 Software Reliability Metrics 110

7.4 Fault Avoidance 111

7.5 Fault Tolerance 112

7.6 Exception Handling 113

Chapter 8 114

8.1 Introduction 115

8.2 Objectives of Software Testing 116

8.3 Testing Principles 116

8.4 White box and Black box testing techniques 117

8.5 Software Testing Strategies 126

8.6 Unit Testing 128

8.7 Integration Testing 130

8.8 Validation Testing 132

8.9 System Testing 133

8.10 Regression Testing 134

8.11 Alpha and Beta Testing 135

Chapter 9 137

9.1 Introduction 138

9.2 Aim of Software Maintenance 139

9.3 Types of Software Maintenance 140

9.4 Maintainability 142

9.5 Maintenance Tasks 144

9.6 Maintenance Side Effects 145

Chapter 10 147

10.1 Overview of Case 148

10.2 Case Tools 148

10.3 Types of CASE Tools 149

Reference Material 153

List of Figures Page No.

Figure 1: Software Development Life Cycle 9

Figure 2: Waterfall Model 16

Figure 3: Prototype Model 18

Figure 4: Iterative Enhancement Model 20

Figure 5: Spiral Model 21

Figure 6: Activity Networks 35

Figure 7: Gantt Charts 37

Figure 8: Democratic Team 38

Figure 9: Structure of a Chief Programmer Team 40

Figure 10: Hierarchical Team Structure 41

Figure 11: Risk Management 46

Figure 12: Requirement Phase Activities 50

Figure 13: Context Diagram 55

Figure 14: Detailed Level DFD 56

Figure 15: Coupling 74

Figure 16: Highly Coupled 74

Figure 17: Content Coupling 75

Figure 18: Common Coupling 76

Figure 19: Communicational Cohesion 77

Figure 20: Sequential Cohesion 78

Figure 21: Arrow with a Circular Tail 80

Figure 22: Arrow with a Shaded Circular Tail 80

Figure 23: Arrow with Diamond 81

Figure 24: Arc with Arrowhead 81

Figure 25: Sequence structure 91

Figure 26: Decision Structure 91

Figure 27: While Structure 92

Figure 28: Do-While Structure 92

Figure 29: Control Complexity Metrics 106

Figure 30(i): Flow Graphs 119

Figure 30(ii): Flow Graphs 121

Figure 31: Connection Matrix 121

Figure 32: Black Box Testing 122

Figure 33: Cause Effect ‘Identity’ Graph 124

Figure 34: Cause Effect ‘NOT’ Graph 124

Figure 35: Cause Effect ‘OR’ Graph 125

Figure 36: Cause Effect ‘AND’ Graph 125

Figure 37: Cause Effect Mixed Graph 126

Figure 38: Software Testing Strategies 127

Figure 39: Unit Testing procedure 130

Figure 40: Top Down Integration 131

Figure 41: Bottom up Integration 132

The Book is available at the following link:

https://www.morebooks.de/store/gb/book/software-engineering/isbn/978-3-659-55566-4

