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ABSTRACT

Missing observations is a common occurrence in data collection. To solve this problem,
researchers have developed missing value imputation techniques for some linear and
nonlinear time series models with normal and stable innovations using estimating function
criterion. This criterion does not take into consideration the distribution of the innovation
sequence of the time series model. Therefore the aim of this study was to develop explicit
optimal linear estimators of missing values for several classes of bilinear models whose
innovation sequences are governed by the normal, student-t and generalized autoregressive
heteroscedasticity using the minimum dispersion error criterion. For comparison purposes,
estimates based on artificial neural networks and exponential smoothing were also obtained.
Data was generated using the R statistical software. 100 samples of size 500 each were
simulated for different bilinear time series models. In each sample, artificial missing
observations were created randomly at points 48, 293 and 496 and estimated. The mean
squared error was used to measure the efficiency of the estimates. The study found that the
efficiency of the estimates was correlated with the probability distribution of the innovation
sequence. Optimal linear estimates were the most efficient estimates when the models had
normal and student-t innovations. However, for bilinear models with generalized
autoregressive heteroscedasticity innovations, the artificial neural network estimates were the
most efficient. The study recommends the use of optimal linear estimates for bilinear models
with either normal or student-t errors. When the data is bilinear with generalized
autoregressive heteroscedasticity errors, artificial neural network estimates are preferred.
These findings can be used by econometricians in developing more accurate models.

Key Words: Neural Networks, Exponential Smoothing, Optimal Linear Estimates
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CHAPTER ONE

INTRODUCTION

1.1 Background to the study

A time series is defined as data recorded sequentially over a specified time period. There are
cases where all the data within the specified period are obtained resulting in a complete data
set. This data is collected at equally spaced time steps and can be analyzed easily since
techniques developed for complete and regular series are available (Musial, 2011). Further,
inferences can be made that can preserve the statistical facts of the system (Campozan, et. al.,
2014). However, data analysts are frequently faced with situations where one or several time
series observations are missing at certain points within the data set collected for modeling

(Pigott, 2001). This leads to missing values at such points.

Missing values may occur for various reasons which may include poor record keeping, lost
records, technical errors, non-responses at the time of data collection, deletion of suspected
outliers that were collected by mistake and also because the time series data was originally
acquired at irregular times (Pigot, 2000; Fung, 2006). In addition, a peculiar case can arise
when one might be interested in determining the likely value of a variable of interest at a
time that may not coincide with a particular measurement or observation (Musial, 2011).
Being unable to account for missing value(s) may lead to a severe misrepresentation of the
phenomenon under study. In addition, the results of the analysis may be characterized by
poor estimates and forecasts of time series (Abraham and Thavaneswaran, 1991). Ng and

Panu (2010) also states that an incomplete data set may lead to complications and uncertainty



in the analysis of the data. Ferreiro (1987) observed that the occurrence of missing
observations is quite common in time series and in many cases it is necessary to estimate
them. Hence it is imperative to find a solution to the missing value problem. Different

suggestions have been made for dealing with missing values for different types of data.

1.2 Missing value imputation

Gupta (1996) suggests that one of the possible ways of dealing with missing values in
multivariate data is to delete the incomplete cases from the dataset. This approach may lead
to loss of valuable information. The other approach is to compute the missing value(s) using
the rest of information in the dataset (Gupta and Lam, 1996). This approach is referred to as
imputation. Imputation is defined as a procedure that is used to fill in missing values by using
substitutes. It can also be defined as a statistical technique that is used to estimate missing

values in an irregular time series (Fung, 2006; Owili, Nassiuma and Orawo, 2015a).

According to Abrahantes, et. al. (2011), imputation broadly comprises several techniques that
have been developed to compute missing values. These techniques may employ basic and
simple strategies such as mean substitution and neural networks approach (Denk and Weber,
2011). It may also involve the use of appropriate statistical prediction or forecasting models
such as regression or time series models. More advanced modeling methods such as those

based on Markov chain and Monte Carlo methods can also be used.

Imputation may also require the analysis of a similar and comparable record to the dataset
with missing value(s) or use of skilled knowledge or experience (Sa'rndal and Lundstrom,

2005). This is because for any incomplete dataset, the collected data values are deemed to



provide indirect evidence about the expected values of the unobserved ones. This evidence
can be combined with certain assumption to imply a predictive probability distribution for
the missing value (Schafer and Olsen, 1998). Generally, the aim of missing data imputation
approach is to compute a reasonable substitute for a missing observation and use the new

complete dataset to carry out the desired modeling or analysis (McKnight, et. al., 2007).

Several factors should be considered in identifying an appropriate imputation method for a
given data. Kaiser (2012) suggests the consideration of the structure of the data. He states
that the commonly used method for missing values imputation in non continuous data is to
substitute missing values of each attribute by its arithmetic average. For time series data and

especially nonlinear time series models, advanced statistical methods may be required.

Complications do arise in the imputation of missing values due to various factors. These may
include the number of missing patterns or observations and the nature of the data. That is, if
categorical and continuous random variables are involved (Horton and Ken, 2007). However,
routines, procedures, or packages capable of generating imputations for incomplete data in
databases are now widely available. For databases one can use regression, correlation
analysis and other non-parametric methods in computing the missing value. This does not

apply to time series data especially when one takes into account innovation sequence.

Researchers have varied reasons for computing missing values. There are cases where they
impute missing values so that they can use them to evaluate the accuracy of the estimates of
the parameters of the model fitted after filling in the missing observations. However, in some
situations, they could be interested in determining the quality of the imputed values at the

level of the individual. In this case, no further analysis is done with the data after imputing



the missing value. This is an issue that has not received much attention (Cortifias, et. al.,
2011). This study was concerned with the finding the accuracy of imputed value(s) at the
specific points where they occurred in contrast to finding parameter estimates of the resulting

model after the infilling of the missing value(s).

Several criteria may be used in the derivation of missing value(s) in nonlinear time series
models. Abraham and Thavaneswaran (1991) used estimating function criterion. They
developed an estimator for missing value for only a particular order of the simple bilinear
time series model, BL (1, 0, 2, 0). This is a unique type of bilinear time series model where
the lagged errors of the bilinear term do not include the innovation sequence. The other
possible criteria that may be employed are the least squares method and maximum likelihood
function. This study used a different criterion from estimating functions. Estimates were
derived by minimizing the dispersion error. The estimates obtained are referred to as optimal
linear estimates. This criterion has not been used before for estimating missing values for

bilinear time series models.

1.3 Statement of the problem

Missing observations is a common occurrence facing data analysts and researchers involved
in statistical modeling in diverse fields. To solve this problem, missing value imputation
techniques have been developed for several linear and nonlinear time series models.
Unfortunately these techniques are only appropriate for the autoregressive moving average
(ARMA) models whose innovation sequences follow either the normal or infinite variance
stable distributions. A bilinear time series model is a class of nonlinear time series which has

ARMA models as its special case. As far as bilinear time series models is concerned, an



estimator for missing values was developed for only a particular order of the simple bilinear
time series, BL (1,0,2,0). Thus for several classes of bilinear time series models, there is no
explicit method for estimating missing values. Further, the estimation of the missing value
for BL (1, 0, 2, 0) was based on the estimating functions criterion which does not consider
the distribution of the innovation sequence of models. Therefore, this study sought to fill
these gaps by developing explicit methods for estimating missing values for different classes
of bilinear time series models whose innovations follow the normal, student-t and
generalized autoregressive heteroscedasticity probability distributions by minimizing the
dispersion error. Pure bilinear and the general bilinear time series models were the main
classes of bilinear time series considered. For comparison purposes, estimates of missing
values for bilinear time series were also obtained using two commonly used nonparametric

methods of artificial neural networks (ANN) and exponential smoothing (EXP).

1.4 Objectives of the study

The general and specific objectives of the study are given below.

1.4.1 General objective

The purpose of the study was to develop estimators of missing observations of bilinear time

series models with different innovation sequence by minimizing the dispersion error.

1.4.2 Specific objectives

The specific objectives of the study were to:



b)

d)

Derive estimators for missing observations for bilinear time series models using
linear interpolation technique when the innovations are identically and independently
distributed normal sequences by minimizing dispersion error.

Derive estimators for missing observations for bilinear time series models when the
innovations have independent and identical student-t distribution using linear
interpolation techniques by minimizing dispersion error.

Derive estimators for missing values for bilinear time series models with GARCH
errors using linear interpolation techniques by minimizing dispersion error.

Estimate missing values for bilinear time series models using non-parametric
methods of artificial neural networks (ANN) and exponential smoothing (EXP)
techniques.

Compare the efficiency of the estimates obtained and determine how they vary with

the position of the missing data point.

1.5 Significance of the study

Time series models, among them bilinear time series models, are widely used in decision

making especially in economics, environment and finance for prediction and forecasting

purposes. These models play a key role in budgeting, forecasting and enhancing the

understanding of the mechanisms generating data. For accurate and reliable results, the

models constructed must be based on all the data that is supposed to be collected, be it

sample or census data. This study has shown that efficient estimates of missing values can be

obtained using optimal linear interpolation technique for bilinear time series models with

normally and t-distributed innovation. The artificial neural networks can be used to estimate



missing values for bilinear time series models with GARCH innovations. It is also evident
that the estimation of missing values depends on the distribution of innovation sequence of
the data. These findings are of benefit to researchers, university lecturers, data analysts and
planners in the Government who are involved in modeling financial, economic and

seismology data that can be modeled using bilinear time series models.

1.6 Limitations of the study

The study used the Time Series Model (TSM) software that is usually used for the analysis of
time series data. However, it cannot model higher order pure diagonal bilinear models and

hence only simple pure diagonal models were studied.

1.7 Scope of the study

The study focused on estimating missing values for bilinear time series only. While several
methods for estimating missing values exist, the study used only two other methods of

missing values imputations namely, artificial neural networks and exponential smoothing.

1.8 Assumptions of the study

The models used were assumed to be stationary bilinear time series and that the higher order
moments were deemed insignificant. The innovation sequence was assumed to be
independent and identically distributed (i.i.d) random variables when the models had the

normal or the student-t distribution.



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter, we first review the literature on nonlinear time series models, then review one
on imputation of missing values for different types of time series data, namely: cross-
sectional time series, micro-array time series and spatial-temporal time series. We also
examined imputation methods used for linear and nonlinear time series models. Imputation

methods used for nonparametric methods are also discussed.

2.2 Nonlinear time series models

Most of the real-life time series encountered in practice are adequately described by
nonlinear models. Nonlinear models are appropriate for data that exhibits time irreversibility,
outlying points and cyclicity. According to Nassiuma (1994), nonlinearity can be approached
in two different ways; in the first case, nonlinearity is introduced in the structure of model
but it is assumed that the distribution of the innovation sequence is Gaussian. Bilinear time
series models by Subba Rao and Silva (1992), threshold autoregressive models by Tong
(1983), exponential models by Haggan and Ozaki (1981), random coefficient autoregressive
(RCA) models by Nicolls and Quinn (1982), state dependent models by Priestly (1980) and

several of their modifications are good examples of models that fall in this category.

The second case is to assume that the process is still linear but the innovation sequence is

non-Gaussian. In this category, we have finite and infinite variance time series models. Finite



variance non-Gaussian processes include the gamma and exponential autoregressive
processes (Gaver and Lewis, 1980; Jacobs and Lewis, 1977 and Lawrence and Lewis, 1980).
A more complicated case involves models that consist of a blend of non-Gaussian and
nonlinearity. A classic example is the bilinear models with infinite variance innovations (Liu,

1989). The important nonlinear time series models used in this study are described below.
2.2.1 ARCH models

A process {g,} is an autoregressive heteroscedastic ARCH (q) model if the conditional

distribution of {¢,} given the available informationy, , is expressed as

&1y ~N(@Oh)
where

q
_ 1/2 _ 2
& =nh"" h =« +Zai8t_i
i=1

q
The parameters of this model satisfy the conditions: ¢, > 0 for all i=0 1,2,3..., Z a; <1 and
i=1

n, is a sequence of independent and identically distributed (i.i.d) random variables with mean
zero and unit variance (Engle, 1982). An important property of these models is that they can
describe the time varying stochastic conditional volatility (Islam, 2013). This can be used to
improve the reliability of forecasts and to help in understanding the process. It is important to

realize that the series{¢,} is a martingale difference and hence cannot be predicted.

However, the squared series &7 can be forecasted with the best forecast given as



q
E(e? Iy ) =a,+ ), apel;.

i=1
These models include lagged variances in the prediction of future variances as indicated in
Engle (2004), and thus can be used in the measurement and forecasting of the time varying
volatility of returns and financial assets observed at high sampling frequencies such as daily
returns (Andersen, Bollerslev, Diebold and Labys, 2003). Further, they specifically take the
dependence of the conditional second moments when modeling into consideration. This
accommodates the increasingly important demand to explain and to model risk and
uncertainty in financial time series (Degiannakis and Xekalaki, 2004; Engle, 2004; Fan and

Yao, 2003).

Despite their importance in modeling financial data, the ARCH models have a relatively
long lag length in the variance equation (Wagalla, et al., 2012). This implies that they contain
many parameters that have to be estimated and hence it is not a parsimonious model.
Bollerslev (1986) developed a more parsimonious model called the Generalized ARCH
(GARCH) model. It uses a few number of parameters than ARCH model for modeling a

given time series data. For the GARCH (p, q) models, the conditional variance is specified as

h =a, +a&, +tae ,+ph +..+ 6,0

with the inequality conditions ¢, >0, «, 20 for i=l,....q, f =0, for i=1,...,p. This

ensures that the conditional variance is strictly positive.
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2.2.2 ARMA models with ARCH errors

The ARMA model can be combined with an ARCH model to obtain an ARMA (k, I) process

whose innovations {¢,}are ARCH (q). The ARMA (k, I) model with ARCH error is given by

where {&,}is ARCH (q) (Weiss,1984). The above model is basically an ARMA model and

much of the theory of Box-Jenkins identification and estimation approach can be applied to

it.
2.2.3 Bilinear time series models

A discrete time series process X, is said to be a bilinear time series model BL (p, g, m, k) if

it satisfies the difference equation

p q m k
Xe=D g X+ 08+ > by X e +e,
i=1 j=1

i=1 j=1

where 0,4 and By; are constants while e, is a purely random process and &, =1 (Granger and

Andersen, 1978a; Subba Rao0,1981). For example, the bilinear model BL (1, 1, 1, 1), is

expressed as

X = ¢Xt—l + 69171 + bllxt—let—l +€ .
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Subba Rao (1984) showed that with a large bilinear coefficientb,., a bilinear model can have

ij !
sudden large amplitude burst that can be suitable for some kind of seismological data such as
earthquake and underground nuclear explosion data. A bilinear process is also time
dependent. This feature enables bilinear processes to be used in modeling financial data
(Maravall, 1983). Bilinear model is a member of the general class of nonlinear time series

models referred to as ‘State dependent models’ formed by adding the bilinear term to the

conventional autoregressive moving average (ARMA) model (Priestly, 1980).

Bilinear time series models and its variants have been used successfully for forecast
improvement. Wagalla, et al. (2014) modeled different time series stock data at Nairobi
Securities Exchange (NSE) and found that bilinear models with GARCH innovations gave
more efficient estimates. Earlier, De Gooijer (1989) reported a forecast improvement with
bilinear models in forecasting stock prices. In a much earlier study, Maravall (1983) used a
bilinear time series model to forecast Spanish monetary data and reported a near 10%

improvement in one step-ahead mean square forecast error over several ARMA alternatives.

The statistical properties of such models have been analyzed in detail by Granger and
Andersen (1978a), Subba Rao and Gabr (1984), Hannan (1982), Liu and Brockwell (1988)

etc., while an economic application is presented in Howitt (1988).
2.2.4 Bilinear time series model with ARCH innovations

According to Weiss (1984), the combined bilinear model with ARCH errors is given by

D)X, ~1)=0(B)z, + 3.3 B X, o

i=l j=1
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and

& :77tht1/2'
p n s
where E(g, /v ;)=0 and h, =a, + Y aeZ; +5,(X, —u)? + > 6, (X; —u)?.
i=1 i=1

®(B) and ®(B)are the characteristic polynomials, 4 is the mean of the time series
observations and {e,} is the innovation sequence. A stationary bilinear model can be

expressed in a kind of moving average with infinite order according to Wold (1954)

decomposition theorem. This enhances its application in making inferences.
2.3 ldentification of bilinear time series models

Given a time series data, the first step in the identification process of bilinear time series
model is to test whether the data can be modeled either as a linear time series or belongs to
the broader class of nonlinear time series models. This involves testing a null hypothesis that
the data is linear. This can be done using one of the statistical tests of linearity (Keenan,
1985; Tsay, 1986). If the null hypothesis is rejected then the data can be appropriately
modeled by a nonlinear series model and a bilinear model is one of the candidate models that
may be considered (Subba Rao, 1981; Subba Rao and Gabr, 1984). If the data is nonlinear

then the second step follows.

The second step in the identification process is to determine the class of the nonlinear models
to which the data belongs. This involves the use of moments and cumulants. It has been
noted that BL (p, O, p, 1) and ARMA (p, 1) models have similar second order moments and
hence these moments cannot be conclusively used in identification of the bilinear time series
models (Subba Rao, 1991). Consequently, it is imperative to use higher order moments of the
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data in the identification process. The higher moments are known to satisfy the Yule-Walker
type difference equations (Subba Rao, 1988, 1991). Thus, the Yule-Walker type difference
equations could be used for model identification of the bilinear time series models. The
difference between bilinear time series and other nonlinear time series models is that the
higher order moments of a bilinear time series (including the fourth moments) decay slowly
as the lag tends to infinity. However, the fourth moments of the other nonlinear time series

models do not behave in this manner.

After determining that the data is bilinear, then the order of the model is determined using
canonical correlation analysis carried between the linear combinations of the observations
and linear combinations of higher powers of the observations. The technique of identification
of a given nonlinear model can be extended to more general bilinear models provided there
are difference equations for higher order moments and cumulants (Subba, Rao and da Silva

1992).

For some super diagonal and diagonal bilinear time series, the third order moments are not
equal to zero. This pattern of nonzero moments can be used to discriminate between white
noise and the bilinear models and also between different bilinear models (Kumar, 1986).
Using the patterns presented in a table of third order moments, one can easily distinguish
bilinear models from pure ARMA or mixed ARMA models. Third order moments may also
be useful in detecting non-normality in the distribution of the innovation sequence (Poti,

Nassiuma and Orawo, 2015b).
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2.4 Estimation of parameters of the bilinear time series models

Several estimation techniques have been proposed in the literature. Some of them deal with
particular classes of the bilinear time series models. Subba Rao (1981) first proposed two
methods for the estimation of the model parameters of a bilinear time series models, namely
the use of Newton Raphson technique and the Marquart Algorithm. He applied both methods
to the estimation of the parameters of a bilinear time series model identified for sunspost and
seismology data. Secondly, he proposed estimation of the parameters of bilinear models
using maximum likelihood method. More recently Shiging, Liang, and Fukang (2015)
proposed a generalized autoregressive conditional heteroskedasticity-type maximum
likelihood estimator for estimating the unknown parameters for a special bilinear model.
They showed that their proposed estimator was consistent and asymptotically normal under
only finite fourth moment of errors. Mathews and Moon (1991) proposed the use of
covariance estimates based on the least squares method on the parameters of the bilinear
model BL (p, O, p, 1). Won, Kim, Billard and Basawa (1990) estimated the parameter of the

simple diagonal bilinear model BL (0, 0, 1, 1) using the least squares method.

2.5 Missing value imputation for time series cross-sectional data

Numerous imputation techniques have been proposed in the literature (Rubin, 1996; Sarndal
and Lundstrom, 2005) for the imputation of missing values in time series cross-sectional data
(TSCS). These techniques are classified according to the type of dataset used; whether a non-
parametric model is used or not, and if randomization is used or not for selection of imputed
value. Among the first imputation methods used in TSCS was kernel density estimation in

combination with nonparametric bootstrap (Titterington and Sedbranks, 1989). The other
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methods used for imputing missing values include: Expected Maximum Algorithm (EM),
Single Imputation (SI), Multiple Imputation (MI) and Artificial Neural Networks (Bishop,

1995).

In Single Imputation (SI) approach each missing value is replaced by single imputed value
using, say, interpolation approach or regression analysis. The replaced value is then treated as
if it were an actual data value. This approach enables analysis with procedures designed for
complete datasets. This method is simple and can be applied to any dataset. Its main
disadvantage is that it does not account for the uncertainty about the predictions of the
imputed value. Therefore the estimated variances of the parameters are biased towards zero,
leading to statistically invalid inferences (Rubin, 1987). This can be overcome using multiple

imputation method.

Multiple imputations (MI) is a methodology for estimating missing observations using a set
of M reasonable estimates that represent the uncertainty about the right values. It has
received considerable attention in the literature (Schafer, 1997). It maintains the flexibility
and relative ease of application of single imputation while taking into account the variability

due to the imputation of the missing values.

The application of MI has focused mainly on cross-sectional models for survey data.
However, it has also been used on panel and time series data (King, et al, 2001). Although
from a theoretical point of view there is no reason why MI cannot be used for time series
data, its application has been difficult in practice. With cross sectional data, discarding

records with data missing completely at random (MCAR) has the effect of only reducing the
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available sample. However, in a time series each record is unique and the data is also

correlated; dropping it would leave the series with gaps, unusable for many purposes.

These imputation techniques have also been extended to sample surveys, where the object is
to generalize estimates obtained in the survey to a larger population. For surveys based on
registers, random imputation for qualitative variables has been suggested (Wallgren and
Wallgren, 2007). Also Fiedler and Schodl (2008) applied random imputation for person’s
occupation and education in a test of a register based census. Multiple imputations in

registers have been used by Abowd et al. (2006).

Honaker and King (2010) developed an approach to analyzing data with missing values that
is suitable for large numbers of variables. This characteristic is common in multivariate data
used in comparative politics and international relations; or when qualitative knowledge exists
about specific missing cell values. Their method greatly increased the information
researchers are able to extract from a given data. This study was neither interested in cross-
sectional time series data nor in survey data. The study sought to obtain single estimates for

missing values for data which is not cross-sectional.

2.6 Estimation of missing values for micro-array time series data

Dempster, et al. (1977) formalized the EM algorithm; a computational method for efficient
estimation from incomplete data. Cao, et al. (2008) proposed a new method for estimating
missing value in a micro-array data based on non-parametric regression combined with
nearest neighbor approach, referred to as NPRA, which can capture both linear and non-

linear relations between genes and arrays. They performed a comparative study of the
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imputation methods using different public datasets. The NPRA method produced more
superior results than the other methods for different cases of missing value points and sizes
of missing values. This study was also not based on micro-array time series nor did it extend

the methods used in micro-array to bilinear time series.

2.7 Estimation of missing values for spatio-temporal time series

Multiple time series data that correspond to different spatial locations are referred to as the
Spatio-temporal time series. One approach to analyzing spatial data with missing values was
outlined by (Gomez, et al., 1995). It uses the bootstrap method to input missing natural
resource inventory data. Yozgatligil, et al. (2012) compared several imputation methods used
to compute the missing values of spatio—temporal meteorological time series. They assessed
six imputation methods with respect to various statistical properties of the estimators such as
accuracy, robustness, precision and efficiency for artificially created missing data in monthly
total precipitation and mean temperature series obtained from the Turkish State
Meteorological Service. These methods were classified as either simple or computational
intensive. Simple arithmetic average, normal ratio (NR), and NR weighted with correlations
comprised the simple ones. Multilayer perceptron type neural network and multiple
imputation strategy adopted by Monte Carlo Markov Chain based on expectation—
maximization (EM-MCMC) were classified as computationally intensive. They concluded
that despite the computational inefficiency of EM-MCMC methods, they seem good for the
imputation of meteorological time series which has several cases of missing values. Further,

they concluded that using the EM-MCMC algorithm for imputing missing values before
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conducting any statistical analyses of meteorological data definitely decreases the amount of

uncertainty and give more robust results.

A different approach from EM-MCMC that uses nonlinear and mixed integer mathematical
programming (MINLP) models with binary variables for estimating missing values in
precipitation data was developed and evaluated by Teegavarapu (2012). It overcomes the
limitations associated with spatial interpolation methods relevant to the arbitrary selection of
weighting parameters, namely the number of control points within a neighborhood and its
size. Daily precipitation data obtained from 15 rain gauging stations were used to test and
derive conclusions about the efficiency of these methods. The developed methods were
compared with some other approaches namely, multiple linear regression, nonlinear least-
square optimization, kriging, global and local trend surface and thin-plate spline functions.
The new method of mathematical programming formulation gave superior estimates than to

those obtained from all the other spatial interpolation methods.

Abdalla and Marwalla (2005) compared two algorithms for imputing missing values, namely
the Expectation Maximization (EM) Algorithm and the Auto-Associative Neural Networks
and Genetic Algorithms combination, using three datasets obtained from an industrial power
plant, an industrial winding process and Human Immunodeficiency Virus (HIV) survey.
Their results showed that Expectation Maximization Algorithm is appropriate and performs
better in cases where the input variables are largely independent, whereas the auto-
associative neural network and genetic algorithm combination is suitable when the variables

in the model have an intrinsic nonlinear relationships.
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In a different study, Toth, et al. (2000) compared the accuracy of the short-term rainfall
forecast using three techniques: nearest neighbors, artificial neural networks, and auto-
regressive moving average models. The performance of the nearest neighbor technique was
investigated through a subjective trial-and-error process by varying the number of neighbors
in the range [5, 100]. They observed that the performance of the forecast improved when the
number of neighbors was increased; however, the improvement was insignificant when the
numbers of neighbors were more than 20. They also found out that the results obtained by the
nearest neighbors’ method were better than those obtained from autoregressive moving
average models. Based on quality of the performance of the approaches, the artificial neural
networks gave the best results followed by k-nearest neighbor’s method while autoregressive
moving average models gave the worst results. Among the nonparametric methods used,
ANN performed the best. This is one of the reasons that motivated the use of ANN in this

study to determine how it performs with bilinear time series models.

2.8 Missing value imputation for linear time series models with finite variance

Damsleth (1979) developed a method for imputing missing values in a time series which can
be represented as an ARIMA time series model based on computing the optimal linear
combination of the forward and back forecasts. Another approach based on forecasting was
developed by Abraham (1981) who used forecasting techniques to estimate missing
observations in time series. He used the minimum mean squared error estimate to measure
efficiency of the estimates. Missing values for linear processes with finite variance were also
obtained by Miller and Ferreiro (1984). This was later extended by Ferreiro (1987) who

discussed different alternatives methods for the estimation of missing observation in
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stationary ARIMA time series models. His article offered a series of alternatives techniques

for estimating missing observations.

Smoothing methods based on state space formulation have also been used to estimate
missing values and these are described in general terms (Anderson and Moore, 1979).
Algorithms for computing the likelihood function when there are missing data in scalar case
have been provided by Jones (1980), and Ljung (1982, 1993) and Harvey and Pierse (1984)
for stationary models. They showed how to predict and interpolate missing observations and
obtain the mean squared error of the estimate. Beveridge (1992) also extended the concept of
using minimum mean squared error linear interpolator for missing values in time series to
handle any pattern of non-consecutive observations. He applied the method to simple ARMA
models to discuss the usefulness of either the non-parametric or the parametric form of the

least squares interpolator.

State space representation has also been used for estimation of missing values in ARIMA
models (Jones, 1985; Harvey and Pierse, 984). Harvey and Pierse (1984) further discussed
maximum likelihood estimation of the parameters in an autoregressive integrated moving
average (ARIMA) model when some of the observations are subject to temporal aggregation.
They pointed that imputation problem can be solved by setting up the model in state space
form and then applying the Kalman filter. Nieto and Martinez (1996) demonstrated a linear
recursive technique that does not use the Kalman filter to estimate missing observations in an
invertible ARIMA model. This procedure is based on the restricted forecasting approach, and

the recursive linear estimators are obtained when the minimum mean-squared error is least.
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The Kalman filter is a set of mathematical equations that recursively provides an efficient
computational means to estimate the state of a process in a way that minimizes the mean
squared error (Welch and Bishop, 2011). The filter is very powerful in several aspects: it
supports estimation of past, present, and even future states, and can also do so even when the

precise nature of the modeled system is unknown. These are concerned with finding the best

linear estimates of the state vector X, in terms of the observationsY,,Y, and a random vector
Y,. Recursive equations update the mean and covariance matrix and hence the distribution of
the state vector, Y,,,, after the new observation ,Z,,,, has become available. The update

estimates Y,

.., Of the state is the sum of projected estimates using observation at time t, and

the one-step-ahead forecast error.

Thus kalman filtering is a recursive updating procedure that consists of forming a
preliminary estimate of the state and then revising the estimate by adding a correction to this
preliminary estimate. The ease of implementation of Kalman filter algorithm has now made it

become widely used in many applications (Kohn and Ansley, 1983).

In practice, the kalman filter equations are more easily adapted to cope with missing values.
When a missing observation is encountered at time t, the prediction equations are processed
at the point based on the previous values. That is at every point in the time series, a
prediction is made of the next value based on a few of the most recent estimates

(Vijayakumar and Plale, 2007).

Pascal (2005) investigated influence of missing values on the prediction of a stationary time

series process by applying Kaman filter fixed point smoothing algorithm. He developed
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simple bounds for the prediction error variance and asymptotic behavior for short and long
memory process. Fung (2006) derived recursive smoothing methods associated with Kalman

filter to estimates missing values and their mean squared error in ARMA models.

Pena and Tiao (1991) demonstrated that missing values in time series can be treated as
unknown parameters and estimated by maximum likelihood method or as random variables
and predicted by expected values. They provided examples to illustrate the difference
between these two procedures. It is argued that the expected value is generally more suitable

for estimating missing values in time series.

Norazian, et al. (2008) used interpolation and mean imputation techniques for simulated
missing values from annual hourly air pollution data. They found out that the most
appropriate imputation method was to replace each missing value with the mean of the two
data points adjacent to the missing value. This approach is referred to as the mean-before-

after method.

2.9 Imputing missing values for linear time series with infinite variance

Pourahmadi (1984) developed alternative techniques suitable for a limited set of stable cases
with characteristic index a€ (1, 2]. This was later extended to the ARMA stable process with
characteristic index a€(0,2] (Nassiuma, 1994). He developed an algorithm applicable to
general linear and nonlinear processes by using the state space formulation and applied it to

the estimation of missing values.
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2.10 Missing value imputation for nonlinear time series models

Thavaneswaran and Abraham (1987) derived a recursive estimation procedure for estimating
model parameters based on optimal estimating function. They applied this procedure to the
estimation of missing observations. A more general method for estimation of missing values
was developed by Abraham and Thavaneswaran (1991). They developed a general nonlinear
time series model which included several standard nonlinear models such as GARCH and
bilinear time series. They offered two methods for estimating missing observations based on
prediction algorithm which included; the fixed point smoothing algorithm and estimating
functions equations. It was used to recursively estimate missing observations in an
autoregressive conditional heteroscedasticity (ARCH) model and the estimation of missing
observations in a linear time series model. Bilinear model was considered as a special case.
However, they only considered a particular model order, BL (1, 0, 2, 0) using estimating

function approach. No simulation was done to assess its accuracy.

On vector time series, Luceno (1997) estimated missing values in possibly partially non-
stationary vector time series. He extended Ljung (1989) method for estimating missing
values and evaluating the corresponding function in scalar time series. The series is assumed
to be generated by a possibly partially non-stationary and non-invertible vector
autoregressive moving average process. He assumed no pattern of missing values. Future and

past values were taken as special cases of missing data that can be estimated in the same way.
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2.11 Nonparametric methods for estimating missing values

Nonparametric methods have also been proposed for estimating values. Titterington and Mill
(1983) considered kernel estimation of a multivariate density for data with incomplete
observations. When the parameter of interest is the mean of a response variable which is
subject to missing values, Cheng (1994) proposed using the kernel conditional mean
estimator. Hirano, et. al. (2003) studied the estimation of average treatment effects using
non-parametrically estimated propensity scores. In survey statistics, Kim and Fuller (2004)
proposed the fractional hot deck imputation method, in which multiple values are drawn from
the same imputation cell as the missing observation, and a weight is assigned to each imputed

value.

Many other approaches have been developed to deal with missing values, such as k-nearest
neighbor (Troyanskaya, et al., 2001), Bayesian PCA (BPCA) (Oba. et al., 2003), least square
imputation (LSimpute) (Hellem, 2004), local least squares imputation (LLSimpute) (Kim, et

al., 2005) and least absolute deviation imputation (LADimpute) (Cao and Poh, 2006).

2.12 Estimating missing values using singular spectrum analysis

The principal component methods for multivariate data can be generalized to analyze time
series data using a non-parametric approach called the Singular Spectrum Analysis (SSA).
There are different SSA-based methods for filling in missing values in datasets
(Schoellhamer, 2001; Kondrashov, et al., 2005; Golyandina and Osipov, 2006; Kondrashov,
2006). The motivation to use SSA is because it works well with arbitrary any statistical

processes; whether linear or nonlinear, stationary or non-stationary, Gaussian or non-
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Gaussian (Hassani, 2007). Musial, et al. (2011) compared the performance of some of the
currently used approaches to fill gaps and smooth time series such as Smoothing Splines and
Singular Spectrum Analysis in terms of either reconstructing the original record or in
minimizing model selection criteria such as the Mean Absolute Error (MAE), Mean Bias
Error (MBE) and chi-squared test statistics. They concluded that each method showed
strengths and weaknesses, and that the choice of an approach largely depends on the

properties of the underlying time series and the goal of the research.

SSA approach may be integrated with other methods in estimating missing value. Rodrigues,
et al. (2001) proposed an imputation method to be used with singular spectrum-based
techniques which is based on a weighted combination of the forecasts and hind-casts yield by
the recurrent forecast method. They used it to estimate missing data in the total volume of
passengers in a group of international airlines data (Box, et al., 2008). They observed that the
method was easy to implement and the results obtained suggested an overall good
performance. This method incorporates elements from a wide range of mathematical fields
including classical time series analysis, multivariate statistics and geometry, dynamical
systems, as well as signal processing (Golyandina, et al., 2001). It aims at describing the
structure of the time series as a sum of trend, seasonal variations and noise. The workflow of

the SSA gap-filling and smoothing algorithm proceeds in four phases.

The first phase in SSA iterative gap filling algorithm includes centering the original time
series on zero by subtracting the mean value of all its elements and zeroing the missing data
values (Musial, 2011, page 7905-7923). The inner loop of the SSA procedure which

comprises decomposition, grouping and reconstructing is then performed first on this
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transformed time series. The missing values are replaced by computed values of the leading
Empirical Orthogonal Functions (EOF) and on this basis the first estimate of the first

constructed component is generated.

Missing values replaced by the first estimate are now replaced by the second estimate of the
first leading component. The SSA gap filling algorithm is suitable for reconstructing time
series with a highly harmonic oscillation shapes (Vautard, et al., 1992) or nonlinear trends
(Ghil, et al., 2002). It is economical in the sense that a small number of SSA eigenmodes
may be enough in the reconstruction of the original time series (Musial, 2011). This is an
advantage over traditional spectral methods which require many trigonometric functions with
different phases and amplitudes to provide a reliable estimate. On the other hand, the many
steps in the computational requirements of the SSA gap-filling algorithm implementation are
taken as weaknesses in estimating missing values involving a large number of time series. In
addition, it has been noted that this method may not give good estimates when there are
many missing values in time series (Kondrashov and Ghil, 2006). The SSA gap filling
method can be extended to spatial-temporal data or to regenerate missing values in

multivariate time series.

2.13 Artificial neural networks

Artificial Neural Networks (ANN) provides a rich, powerful and robust non-parametric
modeling framework with proven and potential applications in many fields of the sciences
(Popova, et al., 2014). Indeed, the network model is largely determined by the characteristics
of the data. The advantage of neural networks is that they can flexibly model nonlinear

relationships without any prior assumptions about the underlying data generation process (Qi,
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et al., 2001). These characteristics of ANNs have encouraged many researchers to use the
neural network models in broad spectrum of real-world applications. Sometimes, the ANNs
provide better alternatives than the other techniques for solving a variety of problems
(Wenzel and Schroter, 2010; Pashova and Popova, 2011). Artificial neural network are in
general, flexible nonlinear tools capable of approximating any sort of arbitrary function

(Hornick et. al., 1989).

Modeling univariate time series using ANN is generally carried out using a certain number of
lagged terms in the series as input and the forecasts as the output. Masters (1993) established
that if there is a known seasonality in the data, then the number of seasons in that data can be

used to identify the lags in the ANN model for forecasting.

There are several types of ANNSs that are used in modeling. One of them is the multilayer
perceptron which is widely used for modeling of nonlinear dependences (Rumelhart and
Clelland, 1986). A multi-layer perceptron (MLP) model is made up of a layer of N input
neurons, a layer of M output neurons and one or more hidden layers, although it has been
shown that for most problems it would be enough to have only one layer of hidden neurons (
Hornick, et al, 1998). In this type of framework, the connections between neurons are
always feed-forward, that is, the connections feed from the neurons in a certain layer towards
the neuron in the next layer. According to Moreno (2011), the mathematical representation

of the function applied by the hidden neurons in order to obtain an output b, when faced

with the representation of an input vector or pattern X ;1 X ,, X, X;, X is given by

L
b, = fL(6, +> w; eX,,)
i=1
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where i=1,2,..,p, f_is the activation function of hidden layers L, &, is the threshold of hidden
neuron j,w; is the weight of the connection between input neuron i and hidden neuron |

and X is the input signal received by input neuron i for pattern p. The output signal ¥,

provided by output neuron Kk for pattern p, is given by
R L
ypk = fm (ek +Zvjkbpj)’
j=1

where f_ the activation function of output neuron m, 6, is the threshold of hidden neuron
k, v, is the input signal received by input neuron j and output neuron k. In a general way,

sigmoid function is used in the hidden layer neurons in order to give the neural network the
capacity of learning the possible nonlinear function. MLP network training is carried using
the application of gradient descent algorithm (Rumelhart, et al, 1986). This is shown figure 1

below.
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Input Layer Hidden Layer Output Layer

Figure 1: Layers of Artificial Neural Network

Vpk is used as an estimate of the missing value when we input the vector of the r-lagged

values (X, X ,,..., X,,) inthe neural network model developed.

pl?

The multilayer perceptron (MLP) model can be considered as a semi-parametric nonlinear
function which relates the input data to the output data. It has been widely used to model
complex relationships in data (Haykin, 1999). In time series modeling and atmospheric
research, MLP is extensively used to capture the unknown relationships in data. It is also

used in time series imputation researches due to the reported benefits (Junninen, et al., 2004).
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2.13.1 Model fitting using ANN

Studies indicate that consideration of statistical principles in an ANN model building process
may improve the model performance (Cheng and Titterington, 1994; Sarle, 1994).
Consequently, it is important to adopt a procedure in the development of ANN models;
taking into account issues such as data pre-processing, the determination of adequate model
inputs and a suitable network architecture, parameter estimation (optimization) and model
validation (Maier and Dandy, 1999b). In addition, careful selection of a number of internal

model parameters is vital. The general function of these networks is given as
H I
f(X,w) =4, +Zﬂhg(7/0 +z7/hixij
h=1 i=1

where X =[X,, X, X,,...,X,] is the vector of the lagged observations or inputs of the time

series, and w=(f,y) are the network weights. | and H are the number of input and hidden
units in the network and g(.) is a non-linear transfer function (Anders, et. al, 1998). How to
select the input vector of a MLP and the number of hidden units in the hidden layer remains

unresolved in research (Hornick, 1999).
2.13.2 Optimal architecture of ANN

Single hidden layer feed forward network is the most widely used model for time series
modeling and forecasting (Zhang, et al., 1998). The model has three layers of simple
processing units connected by acyclic links. These layers include input, hidden and the

output layers. A MLP is trained using different number of hidden layers. It has been shown
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that ANNs with one hidden layer can approximate any function, given that sufficient degrees

of freedom (i.e., connection weights) are provided (Hornik, et al., 1989).

However, in practice many functions are difficult to approximate with one hidden layer,
requiring a large number of hidden layer nodes (Cheng and Titterington, 1994; Flood and
Kartam, 1994). The uses of more than one hidden layer provide greater flexibility and
enables approximation of complex functions with fewer connection weights in many
situations (Flood and Kartam, 1994; Sarle, 1994; Tamura and Tateishi, 1997). Flood and
Kartam (1994) suggest using two hidden layers as a starting point. However, it must be
stressed that optimal network geometry is highly data dependent. The number of nodes in the
input layer is fixed by the number of model inputs, whereas the number of nodes in the
output layer equals the number of model outputs. The choice of number of hidden nodes, q,

is subjective (Mehdi and Mehdi, 2010).

Another essential task of ANN modeling of time series is the selection of the number of
lagged observations, denoted by p, the dimension of the input vector (Zhang, 2012). This is
perhaps the most important parameter to be estimated in an ANN model because it plays a

major role in determining the (nonlinear) autocorrelation structure of the time series.

In practice, simple network structure that has a small number of hidden nodes often works
well in out-of-sample forecasting. This may be due to the over fitting effect typically found
in the neural network modeling process. An over-fitted model has a good fit to the sample
used for model building but has poor generalizability to out of the sample data (Demuth and

Beale, 2004).
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Although many different approaches exist in for finding the optimal architecture of an ANN,
these methods are usually quite complex in nature and are not easy to implement (Zhang et
al., 1998). Furthermore, none of these methods can guarantee the optimal solution for all real
prediction problems. To date, there is no simple clear-cut method for the determination of
these parameters and the usual procedure is to test numerous networks with varying numbers
of input (p) and hidden (q). For each network, estimate generalization error. The network

with the lowest generalization error is selected (Hosseini, et al., 2006).

2.13.3 Data pre-processing in ANN modeling

ANN models are no exception to the pre-processing of data (Kaastra and Boyd, 1995). Data
pre-processing can have a significant effect on model performance. The available data should
be divided into their respective subsets which include training, testing and validation prior to
any data pre-processing (Burden, et al., 1997). Generally, different variables cover different
ranges. In order to ensure that all variables receive equal weight during the training process,
they should be standardized. In addition, the variables must be scaled in such a way as to be
proportional to limits of the activation functions used in the output layer (Mills and Hall,
1996). For example, since the outputs of the logistic transfer function lie between 0 and 1, the
data have to be generally scaled in the range (0.1-0.9) or (0.2-0.8). It should be noted that
when the transfer functions in the output layer are not bounded (e.g. linear), scaling is not
strictly required (Karunanithi, et al., 1994). However, scaling to uniform ranges is still

recommended (Masters, 1993).

Another important issue to consider is stationarity of the data. Until recently, this has

received very little attention in the development of ANN models. However, there are good
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reasons why the removal of deterministic components in the data (i.e. trends, variance,
seasonal and cyclic components) should be considered (Masters, 1993). Two methods used in
transforming a non-stationary model to a stationary model include differencing and
logarithmic transformation techniques. Differencing has already been applied to neural
network modeling of non-stationary time series (Chng, et al., 1996). However, use of the
classical decomposition model may be preferable, as differenced time series can possess

infinite variance (Irvine and Eberhardt, 1992).

2.13.4 Training in ANN modeling

The data presented to the neural networks are scaled in the range [0, 1]. All neural networks
have a single output with an identity function. Gradient descent back-propagation is used for
the training. The model parameters, learning rate, a cooling factor per epoch and momentum,
are set. The momentum term may be helpful in preventing the learning process from being
trapped into poor local minima, and is usually chosen in the interval [0:1]. Once a network
structure (p, q) is specified, the network is ready for training; this is a process of parameter
estimation that ensures the minimization of the mean square error on the test data. The mean
squared error is evaluated in every epoch and the training proceeds until early stopping
criterion is satisfied (Kourentzes and Crone, 2008). Finally, the estimated model is evaluated
using a separate hold-out sample that has not been used in the training process. The network
performance on the test set is a good indicator of its ability to generalize and handle data on
which it has not been trained. If the performance on the test is poor, the network

configuration or learning parameters can be changed. The network is then retrained until its
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performance is satisfactory. The test and train procedures involve training the network on

most of the input data (around 70 % or more) and testing on the remaining data.

A major problem in training an ANN is deciding when to stop training. Since the ability to
generalize is fundamental for these networks to predict future values, overtraining is a serious
issue (Lawrence, 1997). Overtraining occurs when the system memorize patterns and thus
loses the ability to generalize. Overtraining can occur by as a result of using too many hidden
nodes or training for too many time periods (epochs). However, overtraining can be
prevented by performing test and train procedures or cross-validation. Most studies suggest
that the number of iterations during training should lie between 85 and 5000 iterations
(Doboeck, 1994). He further claims that training is affected by many varied parameters and
so it is difficult to determine a general value for the number maximum number of epochs.
Most neural network software program provide default values for learning rate that typically

work well (Onder, E., Bayir, F., Hepsen, A.,2013).
2.13.5 Performance measures

The predictive capabilities of the optimal linear estimates are compared with estimates
obtained from artificial neural network (ANN) and exponential smoothing methods. The
Mean Absolute Deviation (MAD) and Mean Squared Error (MSE) are computed and

employed as performance indicators. These measures are given by

2 Jel
MAD=-=—
N 1)

and
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P3N
MSE==—
n )

2.13.6 Validation in ANN modeling

Once the training (optimization) phase has been completed, the performance of the trained
network has to be validated on an independent data set using the criteria chosen. It is
important to ensure that the validation data should not have been used as part of the training
process for whatever reasons. If the difference in the error obtained using the validation set is
remarkably different from that obtained using the training data, it is likely that the two data
sets are not representative of the same population or that the model has been over-fitted

(Masters, 1993).
2.13.7 Empirical studies on missing values using artificial neural networks

Most of the studies done on missing values on artificial neural networks have been based on
hydrological and meteorological time series data. Shukur and Lee (2015) claimed that wind-
speed time series data is generally prone to missing values. They further noted that when the
data is nonlinear, other methods such as K-nearest neigbour, kalman filter and linear
interpolation may not be appropriate for estimating missing values. Therefore they proposed
a hybrid of ANN and AR methods denoted by ANN-AR. Their tests showed that ANN-AR
estimates give more accurate results for hydrological data. Abdalla and Marwala (2005) have

used neural networks and genetic algorithms to approximate missing data in a database.

Other hybrid models that incorporate various artificial neural networks have also been used

to specifically estimate missing stream-flow data (Elshorbagy, et al., 2002). Current advances
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in estimation techniques for predicting missing stream-flow data continues to incorporate
basic ANN concepts (Ng, et al., 2009). Malek, et al. (2008) developed a data infilling model
that utilizes the basic principles of artificial neural network (ANN) combined with the nearest
neighbors imputation technique. Their results showed that the method proposed was robust
enough to cope with vagaries due to varying sample sizes and extreme data insufficiency.
Further, the study showed that ANN is superior in filling in missing values for hydrological
data. Pachepsky and Yakov (2010) developed a model that incorporated artificial neural

network for infilling missing values in time series meteorological data

2.13.8 Estimation of missing values using exponential smoothing

Gupta and Srinivasan (2011) used exponential smoothing (EXP) method in estimating
missing values for time series data on water flow. They reported that they obtained good
results. Since time series data are noisy, the ARIMA models may not provide better estimates
than those obtained from the nearest neighbors and cold deck methods. It has been found that
the exponential smoothing with a constant a=0.2 may produce better forecasts than those
based on ARIMA models (Background Facts on Economic Statistics, 2013). Time series
smoothers estimate the level of a time series at a given time as its conditional expectation
given present, past and future observations, with the smoothed value depending on the

estimated time series model (Ledolter, 2008).

Nassiuma and Thavaneswaran (1992) derived a recursive form of the exponentially
smoothed estimates for a nonlinear model with irregularly observed data and discussed its

asymptotic properties.
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It is evident from the literature that imputation of missing values is a topic of interest to many
researchers. This is reflected by the many studies done in this area. Further, different
imputation methods have been developed for different types of time series models. Most of
these are linear time series models. It is also evident that these methods have been based on
criteria such as maximum likelihood method, estimating function and simple linear
interpolation techniques. Other simple methods like mean of adjacent values have been
suggested. However, what is lacking in the literature is an explicit method for estimating
missing values for a class of nonlinear time series called bilinear time series models. The
only case recorded so far is the estimation of missing values for a simple order BL (1,0, 2
,0). This method was based on estimating function. No estimates of missing values have been
derived using the dispersion error. Further, no simulation study has been done on the
performance of estimates obtained. These are important gaps in the literature that the study

set to fill.
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CHAPTER THREE

OPTIMAL LINEAR ESTIMATORS OF MISSING VALUES

3.1 Introduction

Optimal linear estimates of missing values for several simple, pure and general bilinear time
series models whose innovations follow Gaussian, Student-t and GARCH distributions are
derived by using minimum dispersion error criterion. Two assumptions were made in the
process of the derivations; the first one is that the time series models used are stationary and
thus their roots lie within the unit circle. Secondly, the higher powers (of orders greater than
two or products of coefficients of orders greater than two) of the coefficients are
approximately negligible. This is a consequence of the result of the first assumption. Further
the innovations consisted of sequence of independent and identically distributed (i.i.d)

random variables for the normal and t-distribution innovations.

3.2 The steps in deriving the optimal linear estimators

The steps followed in the derivation of the optimal estimates are as follows:

e The first step is to express the stationary bilinear time series model as a linear
combination of the innovation sequence of the series.

e Then find the h-steps ahead forecast for the time series obtained in the first step.

¢ Obtain the h-steps-ahead forecast error.

e Square the forecast error and take its expectation. This is the dispersion error.

o Differentiate the dispersion error with respect to the coefficient a, to obtain the value of

the coefficient that result in minimum dispersion error.
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The optimal linear estimate x;, for estimating the missing observation x,, is by given

n
X;\ = )A(m + Zak(xk - )A(k)
k=m+1 (3)

where X is the estimate obtained from the model based on the previous observations of the
data before the point m. The coefficients a, (k=1, 2,.., k-m) are to be estimated by

minimizing the dispersion error (disp X,,) given by equation (3) (Nassiuma,1994).
3.3 Estimating missing values for bilinear models with normally distributed innovations

Pure bilinear time series models are models described by the bilinear parameter term only
(Owili, Nassiuma and Orawo 2015c). The coefficients of autoregressive and moving average
components are zero. We look at both the simple and the general pure bilinear time series

models.
3.3.1 Simple pure bilinear time series models with normally distributed innovations
The simplest pure bilinear time series model of order one, BL (0, 0, 1, 1) is of the form

X, =b;,X .6, +e, where e ~N(021) @)

The missing value estimate for this model is based on the following theorem 3.1.

Theorem 3.1

The optimal linear estimate for BL (0, 0, 1, 1) with normally distributed innovation is given

by
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Proof

Through recursive substitution of equation (4), the stationary BL (0, 0, 1, 1) is obtained

X, = i{ﬁ bllet—j }eti +€

The h-steps ahead forecast is

t+h Z{H bll t+h- |}et+h i +et+h

Py -

Therefore the forecast error is

h-1 i
Xt+h - Xt+h = Z{H bllet+h j }ewh i + et+h ' (5)

i=1

Equation (5) can be expressed as

hZ{H by j}ek—i + €. (6)

Substituting equation (6) in equation (3), we have

n n 2
dlsp Xn = E(Xm _)/Zm)2 _ZE(Xm _)’Zm) Zak(xk _)’Zk)_'_ E{ Zak(xk _kk)}

k=m+1 k=m+1
= E(é _2E(e ) Z akZ{Hbll t-+h— |}eki +€
k=m+1 =1
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tE k;lakk;dakZ{ll[blleHh }Qk—i +€ 0

Simplifying each of the terms of equation (7) separately, we obtain

first term on the right  E(x, —X,)* =

k=m+1 =0

2EE o Zn‘,akZ[anek J}

2
a b e m+2(bllem+1 +bll em+lem )

m+1

A 3 2
= 2Eem o+ am+3 (bllem+2 + bll em+2em+1 + bll em+2em+1em

+...

=0

Second term E|2¢ e Zn:akZ{Hbﬂek ,}e

k=m+1 =1 | ]

k—-m a A
=2Ee, ea, (b, €&.,86 ,-€ 1)

= 2.Ee?a, b, " EH e

=0

2
n k-m i
Third term: E ZakZ{anéHh_j}éHh_i+ét+h

k=m+1 =1 | j=1

2

A 2 A 2 2 2 2
a'm+l (bllem + em+l ) + a‘m+2 (bllem+1 + bll € e + em+2 )

2 2
m+3 (bllem+2 + bll em+2€m+l

n n
= 30D’ Zaf + Zafaz

k=m+1 k=m+1

— E ) \ m+1
+ bll eerzeerle + em+3)

Hence equation (7) can be simplified as
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disp x, =c+3c'0," > al + > ajo’ (8)

k=m+1 k=m-+1

Now differentiating equation (8) with respect to a, and equating to zero, we obtain

idisp X, = %{02 +30'h,” D al + Zafaz} =0
k

dak k=m+1 k=m+1

= a4, =0

Substituting the values of a, in equation (3), we obtain optimal estimator of the missing
value as

This result shows that the missing value is a one step-ahead prediction based on the past

observations collected before the missing value. This is similar to the findings of Nassiuma

(1994) which found &, =0 for missing values of ARMA stable processes in some cases.

3.3.2 Estimating missing values for pure bilinear time series model with normal
innovations

The pure bilinear time series model BL (0, 0, p, p) with normal innovations is given by

p
X, =D biX e +e,, where e, ~ N(0)

i=1

The missing value estimate for this model is based on the following theorem 3.2.
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Theorem 3.2
The optimal linear estimate of the missing value for the pure bilinear time series model BL

(0, 0, p, p) is given by

p
Xn = Zbiixt—iet—i +€ (10)
i1

Proof

The stationary pure model is obtained by recursive substitution of equation (9) leading to

=ii( i ( sS t sj )}t is +e +Z stlslbszs2 t-s;-5, [ i(et—s1 —I—et—s2 )J+O(h) (11)

s=1 i=1 s=1s,>8; $1=1,8,>8;

Setting t at t+h in equation (11), the h-steps ahead forecast is given by

o0

i=1 i=1l
p-1 p 2 p
+ Z Z bsls1 bszs2 et+h—sl—s2 Z (et+h—s1 + et+h—52 ) + O(h) (12)
$1=15,>5; $1=1,5,>5;

Thus h-steps ahead forecast error is given by

p i p-1 p p
2
t+h t+h ZZ( ( ss t+h sj )}Hhis +et+h + Z stlslbszs2 etJrh—sl—s2 [ z ,(et+h—sl +et+h—52 )]
j=

s=1 i=1 s;=15,>5; $,=1,5,>8;

or

p k-m( i , p
= ZZ[ (bssek sj )}k is + ek + Z stls1 bszszek $1—S; [ Z(ek—s1 + ek—s2 )J (13)
¢ i1

s=1 i=1 $1=18,>8; $1=1,5,>8;
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Now substituting equation (13) in equation (3) and setting h-1=k-m, we get

disp x, = E(x,, — & )" —2E(x, - )Zn:akzp:%( i (bssek_sj)}k_iﬁek

k=m+1 s=1 i=1

p k-m( i p-1 p ) p ?
kz : bssek SJ k—is + ek + Z Z:l")slslbszszek—sl—s2 Z:(ek—sl + ek—sz) ) (14)
i=

s,=1s,>s; s,=1,5,>s;

Substituting equation (14) in equation (3) we have
disp x,, = E(émz)

n P k—-m i n
( Zakz (H (bssek i )}kis + ZakekJ_'_
A k=m+1 s=1 i=1\_ j=1 k=m+1
—-2E
p 2 p
Z a'k Z b5151 bszsz ek—sl—s2 ( z (ek—:s1 + ek—s2 )]

$=1,8,>8;

[Zazl( boer )b+ iakek}

j=1 k=m-+1

n p—1 p 2 p
Z ak z Z b5151 b5252 ek—sl—sz Z (et+h—51 + ek—Sz )
k=m+1 s;=1s,>3 $1=1,8,>8;

’ 15)

Simplifying each term in equation (15), we obtain

First term: E(ém2)= o’

k=m+1 s=1 i=1l

Second term: —E26 e ZakZZ[ i (bssek_sj)jek_iS
j=1

=-2E€ 'Z(bk "€ & p5--€n) =0

Third term: E€ e > ae =0

k=m+1
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n -1
Fourth term 2Eé_e Zakpz Zp:bslslbszszekslszz( Zp:(ek,s1 +, )]

k=m+1 s;=1s,>s; s;=1,5,>3;

n -1
=+2e Zak pz stlslbszs2 Ee { i(ekfsl + ekfsz )]

k=m+1 s,=1s,>5; 51=1,5,>5;

k=m+1 s;=1s,>3; $1=1,5,>8;

n p-1 p p
=2 Zakz zb515 bszsza Eé [ Z(ek—sl +ek‘52 )J

n -1
ZZakZstsbssa ,for m=k-s, or m=k-s,

k=m+1 s;=1s,>s;

0 ,otherwise

T3 () S0 z] 2

k=m+1 s=1 i=1\_j k=m+1

Fifth term: E [

n p-1 p p
Zak Z Z bslsl bszs2 ek—sl—s2 2( z (ek—s1 + ek—s2 )J

k=m+1 s;=1s,>s; $1=1,8,>8;

= Zn: af(304b552)+ Zn: alfO'2

k=m+1 k=m+1

Therefore equation (15) becomes

n n
o’+ Y a;(3c'h )+ D ale’  for s, =k-m, s, zk—m

k=m+1 k=m+1

n -1 n
c?-2 z akpZ: Z b, b, c'+o’ z a’(30°b, > +1)

k=m+l s =ls,>s; k=m+1

Disp x,, =

(16)

Differentiating equation (16) with respect to a, and setting the result to zero we get
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(> 2a,(30°bi)+2 > a0’ =0 fors #k-m,s, #k-m

k=m+1 k=m+1

. d
dispx,, = — 0 pa

%23 S (b, ot + ZGZSZ:ak (30°b2 +1) = 0 otherwise

k=m+1s,=15s,>3;

7)

Hence from equation (17), we have

a =0 for fors, #k-m,s, #k—m

p-1 p
ék = Z Z (bslsleZSZUz

s;=15,>5,

(3o%bZ +1)

fors, #k—-m,s, #k—m

These results indicate that the observed values after the missing point may play a role in the
estimation of missing value(s). In most cases there is a weight assigned to these values;
values near the missing values are assigned higher weights. Therefore the optimal linear

estimator of a pure bilinear time series model is

p ~
X :Zbiixt—iet—i for s, #k—-m, s, #k—m
i=1
or
p-1 P ,
LN n Z;stlslbszszo-
R A $1=15,>8; _
Xm _Zbiixt—iet—i+ D : (Xk —Xk), for $,:S, =k-m
- MY (3o’h, +1)
s=1
(18)
Corollary

i) For the case b, =0 or b, =0 then 4, =0

i) When k-m=0, it means the missing data point is the last data. For this case, 4, =0.
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iii) When k-m=1, it means the missing data point is the second last data. For this case
Therefore k-m cannot be equal to s2s2. Therefore, 8, =0.

iv) For most cases, k-m cannot be equal to s1 or s, and therefore for pure bilinear time series,

we can generally say that & =0.This means that for all pure bilinear models, we

have , =0.

3.3.3 Estimating missing values for BL (1, 0, 1, 1) with normal innovations

The stationary bilinear time series model of order BL (1, 0, 1, 1) is given by

X, =¢x_, +bx_ e +e, e ~N(0]) (19)

The optimal linear estimates for this model is obtained using theorem 3.3.
Theorem 3.3
The optimal linear estimate for the bilinear time series model with normal errors, BL (1, 0, 1,

1), is given by

. . n AU
X" =@x ,+b,x 6 |+ < ~
m 1Am-1 11 m-1%m-1 kZm1(1+¢12+3b1126'2)

(Xk - )A(k)

Proof
Performing recursive substitution of equation (19), the stationary BL (1, 0, 1, 1) can be

expressed as
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The h-steps ahead forecast is given by

0 i
Xt+h = Z[ (¢l + bllet+h—j )}Hhi + et+h

i=1 \_ j=1
and the h-steps ahead forecast error is given by

h-1 i

Xiin = Reun = Z{H (¢1 +bi )}Hh—i + €

i=1 \_j=1

substituting equation (22) in equation (3) we have

dispx, = E(é 2)—2E € .( Zak Z(H(¢l+bllekj) i T ZakekJ

k=m+1 i=1 \_j=1 k=m+1

i=1 j=1 k=m+1
Simplifying each of the terms on the RHS of equation (18), we obtain

First term: E(émz): o’
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n k—m i n
Second term: — Zém .( Zak Z[ - (¢1 + bllek—j)]ek_i + Zakek]

k=m+l =l k=m+1

+ am+3 (¢l + bllem+2)(¢1 + bllem+1)(¢l + bllem)em + am+3em+3 + )

2 Ya

k=m+1

_ —Eé ° 2|:am+1 (¢1 + bllem)em + a‘m+lem+1 + a‘m+2 (¢1 + bllem+1)(¢l + bllem+2)em + am+2em+2:|
- m

Third term: E{Zn:akk_zm[ﬁ(géﬁbnek_j) i T Zn:akekJ

k=m+1 i=1\_ j=1 k=m+1
n k—m 2 ) n n 2
=E ( > a4 +bnek—jj ] +2( DA Z(¢l+bllek j]ek j Zakek ( Zakek]
k=m+a i=1 k=m+a k=m+1 k=m+1

:{E( Zn: akkzm( ¢, +be. ‘j & +E2£ > akZ((ﬁlerllek Jek J Za ek+E£ Zakekj } (24)

k=m-+a i=1 k=m+a i=1 k=m+1 k=m+1

Equation (24) is simplified as follows:

n k—m n
EZ( > a4 +b11ek_jjek_j D ae =0

k=m-+a i=1 k=m+1
n 2 n )
_ 2
El Yae | =Da’c
k=m+1 k=m+1

( > akZ(qﬁl +bye, ] e ia&(céfaz +30b,%)

k=m+a k=m+1

Hence equation (24) becomes

dispx,, =o? -2 Zn:akgzﬁk‘ma” + Zn:af (¢°c? +35°b,°) + Zn:akzaz (25)

k=m+1 k=m+1 k=m-+1

Differentiating equation (25) with respect to the coefficienta, , we get
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di {a -20° Zakbn(k m 4 Zak (4° +b,°30% +1)o }:

k=m+1 k=m+1

= 0-2¢"Mo?+2a (4" +30, 0% +1)o* =0
Therefore we have

? (k-m)
b

4 =— "
“ " (U+4° +b,2362)

The optimal linear estimate of x,,, given by x; that minimizes the error dispersion error is

thus given as

R+ Zak(xk—x )

k=m+1
Zn: ¢(k7m)
=%+ (X . —R )
m = (1+ ¢1 I 3b112 N 2) m+1 m-+1

¢(k—m) A
:¢1 l+b11Xmle at Z (Xk_Xk)

G (L+ ¢, +30,,°62)

3.3.4 Estimating missing values for BL (0, 1, 1, 1) with normal innovations

The bilinear time series model BL (0, 1, 1, 1) is given by

x, =b,x e +6,_ +e, wheree ~ N(0]) (26)

Theorem 3.4 can is used to estimate the missing value for BL (0, 1, 1, 1) with normally

distributed innovations.
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Theorem 3.4

The optimal linear estimate of a missing value for BL (0, 1, 1,1) is given by

Kn = bllxm—let—l + 6Em—l

Proof

The stationary bilinear BL (0, 1, 1, 1) is expressed as

0 i

X = Z( &, Jet—i—l + Z(H b€ Jet—j +€ (27)
1 i\ ja

i=1 j=

The h-steps ahead forecast based on equation (27) is given by

o i 0 i
Xin = Z(H et—J Jewh—i—l + Z(H bllet+h—j ]et+h—j *€in

=1\ j=1 =1\ j=1
and the forecast error is expressed as

i h-1 i

h-1
T T Z(HH € JeHhil + Z(H bii€en; Jeuhj +€n (28)
isT\ ja

i=1 \_j=1

Substituting equation (28) in equation (3), we have
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2
n k—m i k—m i
disp x, = E{(6,)— > a, 49]_[ek et ( b€, JJ e
k=m+1 i=1 j=1 =1\ j=1

E(6,)°—E 2(6,)s ia{km(eﬂek ,]ek ._1+km[ﬁbnek ] +ek}+

k=m+1 i=1 =1 i=1

| Safsfolte o oo e}

Simplifying each of the terms in equation (28), we obtain the following:

E6,)2 =67

E 2(€,)e iak l:%[ﬂ €i_j ]ek—i—l + kzm(ﬂ bllek—jJek—i + ekj|

k=m+1 i=1

A 2
= E 2(em) ( m+1 {aemem -1 + b11em + em+1 })+ am+2 {&mﬂem m -1 + bll em+le em+2}
2
{HE em + bll em+zem+1e + em+3 }+ am+4 {6em+3em+zem+le em -1 + bll em+Sem+Zem+lem + em+4}
=0
This implies that &, =0. Therefore the best linear estimate is by

+a e

m+3 m+2~m+1

Xy = Bllxm—lét—l + éém—l
3.3.5 Estimating missing values for BL (1, 1, 1, 1) with normal innovations
The bilinear time series model of BL (1, 1, 1, 1) is given by

X, =X, +b X & +6_ +e, wheree ~N(0]) (29)

The missing value estimate for the BL (1, 1, 1, 1) model is based on the following theorem

3.5.
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Theorem 3.5

The optimal linear estimate for BL (1, 1, 1, 1) is given by

n é(k*m)

X =gX . +6 +D X &+ ~ -
v e e k;1(92+1)(1+¢12+3b112&2)

(X = %)

Proof

Thus the stationary BL (1, 1, 1, 1) can be expressed as

0 i

X _ZH[¢l+blletj](6Etll +et|)+(6ét1+e) (30)

i=1l j=1

and h-steps ahead is forecast based on equation (30) is

Xivh = H[¢1 +b€n 1]( i i) H (R T ELy)
1

i=1 j=1

The h-steps ahead forecast error

i
t+h t+h ZH [¢1 + bllet+h j ] t+h—i—l + et+h—i) + (aeuh—l + et+h)

i j4
hei i
[¢1 + bllekfj ](&k—i—l +e.)+ (k. +¢e,)

i=l j=1
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The dispersion error is

E(X, —X3)° = E|:(Xm R e Zn:ak Eﬁ[@ +by,8 ](gek—m +€,)+ (R, +e )}

k=m+1 i=l j=1

= E(émz) —E2¢, Zn: ay {hz_llll—[ [¢1 + bllek—j ](&k—i—l +e.;)+ (6, +e )}

k=m+l | =l j=1

+ E{ Zn:ak hz_iﬁ[@ + bllek—j ](&k—i—l +€ ) T (B, +E )} +E i (B, +8 )2 (31)

k=m+1 i=1 j=1 k=m+1
Simplifying the terms in equation (31) we obtain,

E(@,)=0’

n k-m i n
E2€, o z ay ZH [¢1 + bllek—j ](‘%k-i—l +8)+ Z a, (B, +e)+

k=m+1 i=l j=1 k=m+1

=23, ¢1k_m0'2

Ee { iak kfﬂ [¢1 + bllek—j ](‘%‘k—i—l +e.)+(R + ek)}

k=m+1 i=l j=1

= Zakz(qﬁf +3b, ") (0 +1)o? + Zakz(a2 +1)o?

k=m+1 k=m+1

= (6% +1)o? Zn:akz{gﬁf +3b,°0? +1}

k=m+1

Dispx,, = 02 — 23,45 "% + (02 +1)o? a2 + 30,20 +1]

k=m+1
_d('i:p = 24/ "07 +23, (0 +1)0° Y8 W +3, 207 +1}=0
K k=m+1
¢2‘1k—m

q, =

(6% +1)(4? +3b,,62 +1)62
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n

X =R+ Zak(xk -%)

k=m+1
Zn: ¢(kfm)
= )zm + (Xm+ - )A(m+ )
S0 )L+ gl +30 60

) . Jom
=@ X, +oR  +b,X, 6+
L k;u 0 +1)(1+47 +30,°67)

(Xk _)A(k)

3.3.6 Estimating missing values for BL (p, 0, p, p) with normal innovation

The bilinear time series model of BL (p, 0, p, p) is given by

p p

p
Xy = Zl B X +Zl: Zl: b X i€ + €. & ~ N(0O.1)
(32)

The missing value estimate is based on the following theorem 3.6.

Theorem 3.6

The optimal linear estimate for one missing value X, for the general bilinear time series
model

BL (p, O, p, p) is given by

Proof

Through recursive substitution of equation (24), the stationary bilinear time series model
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BL (p, O, p, p) is expressed as

s< r

+ z Z {¢ + Z br] et j }{¢s + Zp: bsj et—j }etsr + et (32)

r> s

The h-steps ahead forecast is given by

Xien = i Zﬁ{ + z b€ }e T Zp‘,zp:{@ + i bge.n | }{¢r + i bg€nj }et+h—s—r

i=1l i=1 j=1 s< r

p. P p
+ZZ{¢r + Zbrjet+hj}{¢s + st t+h- j} t+h—s—r + et
j=1

j=1

or

X, = Zp: o, i {(;55 +_Zp:bsjek_j }et_sj + Zp“zp:{(/ﬁs +Zp:bsjek_j H¢r +Zp:bsjek_j }ek_s_r

i i=1l j=1 s< r

5185 SN 15 YR St )

r- s

and the forecast is

=Zp:i i {¢S+ibsjek J}e +Zp‘i{¢ +stjek JH¢ +stjek ,}e

i=1l i=l j=1 j=1 s< r
p P p p
+ ZZ{¢r + Zbrjek—j }{¢s + stjek—j }eksr + et (34)
r> s j=1 =l

The forecast error is
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k—m

i=l i=l j=1

+ ZZ{¢ + anek JHg/ﬁs + stjekfj }eksr +e

T

i=0 j=1

{¢ +zb51ek j}t

s< r

r> S

(¢2 + bzlek—2j+l + b22€k—2j )(02€k—2i—2 + Hlek—Zi—l + ek—2i )+ {GZek—Z + elek—l + ek } (35)

Substituting in equation (35) in equation (3), we obtain

disp x,,

= E(Xm -

n
Zak (Xk - )A(k

k=m+1

)A(m)z _ZE(Xm -

) iauxk—ﬁk)w{

k=m+1

The terms on the RHS side of equation (36) are simplified as follows

Second term

—2€ Zn:ak

k=m+1

Firstterm  E(x,-X,)°=

—2E(x, — X;,) Zak(xk - %)=

k=m+1

i=1 i=1 j=1 j=1

iiﬁ{@ DAL } "

p

p p
+ z Z s + Z bsj et+h—j }{¢r + Z bsj et+h—j }euhsr
j=1

p
s< T j=1
PP P P
zz ¢r + Z brjet+h—j ¢s + Z bsjet+h—j et+h—s—|r + et
j=1

r> s j=1

+

k=m+1

Now

k=m+1
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—2€, 0 Zn:ak

k=m+1
2 2 4a, g.g.0°  fors+r=k-m
Z Z{¢ + Zijek j}{¢r + stjek—j }ek—s—r = k:;rl ‘
s<rand s> r j=1 O OtherVVise

Third term

Z”:k—m | {¢s +Zp:bsjekj}etsj +ii{¢s + P by, JH¢ +st,1€k ,}ek or
ii{¢, + ibrjek_j H¢S + stjek_j }ek_s_r +e,

r- s

= Z ak{2¢202+ stj o’ +e_ J+23b }

k=m+1 j=1,5#]

which simplifies to

~20° Z(p(k mes + Z4ak¢¢a + Z ak{z ‘o’ + stj o’ +e._ j+_23b } 37)

k=m+1 k=m+1 k=m-+1 J=ls#]

Differentiating equation (37) with respect toa, and setting to zero, we obtain

k=m+1

idisp =-20" ) g™ +44 0% +
da,

j=1,5#]

2ak{2¢262 + stj ol +e,_ J+23b } =0 (38)

Solving equation (38) for a,, we get
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Corollary
For p=1, we have the bilinear model BL (1, O, 1, 1). The optimal linear estimate is given by

n ¢?(k—m)

x*=¢31x_+t31x_é_+ < <
m m-1 1™m-1%m-1 k§1(1+¢12+3b1126f\2)

(X — %)

3.3.7 Estimation of two missing values for bilinear time series with normal innovations

We consider the situation where two consecutive observations are missing in the data. The

case of non-consecutive missing values can easily be obtained using the previous results and

So it is not necessary to be discussed here. Suppose two consecutive values &, and &, ,, are

missing. Now we could use a vector form such that &, = (&, &,.,)" while the matrix with the

coefficient expressed as a matrix of the form



We can rewrite equation (3) in vector form as

The innovation for the missing value would now be a column vector given by

gm __5; ::(ém __ém)__ :i:aﬁ(fs__és%

S=k+2

where & —fm is a column vector. The dispersion is given by

=E(6,67)-26,0 >
S=k

+

{(gs - és)T ag }+ ias (55 - é;s ){ i(fs - é;s )T {as })} (39)
and
E(Sn = &n)(én—60)" = E{(fm ~&)- Yaal, —és)H(gm ~&)- Ya —si)} .

3.3.8 Estimating two missing values for BL (1, 0, 1, 1) with normal innovations

The stationary bilinear time series model of order BL (1, 0, 1, 1) is given by
X, =@X +bx e, +e, € ~N(0]) (40)
The estimators for two missing values for BL (1, 0, 1, 1) with normal errors is given in

theorem 3.7.

Theorem 3.7

The estimator of two missing values for BL (1, 0, 1, 1) is given by
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5; = égm + ias(és _és)

s=k+1

. n n . {és—m}
fm_§m+5;2| |:{¢12*|+3b1212+|}i|
Proof

From equation (22), the h-steps ahead forecast error for BL (1, 0, 1, 1) is given by

h-1
Xt+h - ),Zt-%—h = Z[H (¢1 + bllet+h—j )}Hh—i + et+h (41)

i=1 \_j=1

Substituting equation (41) in equation in (39) we obtain,

i T

s=k+2 i

(¢1+b11es_j)]es_i s Yage, J (42)

s=k+2

3280

=k+2 s=1\_j=1 =k+2 i =1

Simplifying equation (42) we obtain:
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—2E ém O(Siasi(n (¢1 + blles_j) o+ iasesJ

j=1 s=k+2

s=k+2 s=k+2\ j=1 s=k+2

e [ $a §t (m +bnesj>]esi . z}

= —2{2 Zn:afk}

s=k+2

s=k+2 s=1\ j=1 s=k+2 s=k+2 =1\ j=1 s=k+2

= Yaatl v 43ebi ¥ Y 43 (43)

s=k+2

Therefore equation (43) becomes

dispV=2 — 2{2 >ag } +

s=k+2

le Yaal 25300553 +3 ) (44)

s=k+2

Differentiating equation (44) with respect to the coefficients a,, we get

AV o5yl $aal 7+ 30bs 3T 41}

dak s=k+2
A z¢ls—k Z¢ls—k
_ _ 45
B 720 SR S5 U 3 MR LB SR S Sul ol (49)
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Therefore the estimate of the missing value is given by

M-

s %)
é:m - é:m + S=k+2|:{¢12| +3b121 ZT +1 }:|

where | is an identity matrix.

Corollary

When we have only one missing value, 4, =a,, >. = c?, a, = a, .Therefore we have

gk* ~ ék n {ésfm } P
|:(§;+1:| ) {é\k-#l} " S%z { {¢12 + 3b1210'2 4 1}(55 53)

this can be expressed as

¢ _: ¢’ :
l:é:k* } B {ék :|+ {¢12 + 3b12102 + 1}(§k+2 §k+2) N {¢12 n 3b12162 3+ 1}(§k+3 §k+3)
§*+1 $k+l ¢2 _£ ¢3 &

“ {¢12 N 3b1210'2 N l}(§k+2 §k+2) {¢2 N 3b1210_2 N 1} (§k+3 §k+3)

1

+....

3.4 Estimates of missing values for pure bilinear time series with student t-errors
The missing values can be obtained using the following theorems.
3.4.1 Estimates of missing values BL (0, O, 1, 1) with student t errors

The pure bilinear time series process of order one BL (0, 0, 1, 1) is of the form

X = bllxt—let—l +€, € ~ t(O,l) (46)
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The estimate of the missing value for this model is given by theorem 3.8.

Theorem 3.8

The optimal linear estimate for missing observation for BL (0, 0, 1, 1) with student errors is
Proof

The stationary BL (0, 0, 1, 1) is given by

and the h-steps ahead forecast is

t+h - Z{H bllet+h |}et+h —i +et+h

=1 ]

Therefore the forecast error is

Xih = Xn =

h-1 i
{Hblleuh |}et+h i +et+h (48)

i=1

Substituting equation (32) in equation (3), the dispersion error is given by
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E(Xm _X:])Z = E|:(Xm _)/Zm)_ iak (Xk _)}Zk)i|

k=m+1

= E(xy — %)? —2E (%, — %) D2, (%, — %) + E{ > a, (¥, —ﬁk)} (49)

k=m+1 k=m+1

Simplifying each of the terms of equation (49), we obtain the following:

First Term: E(Xx, —%,)’ =%

2nd Term:  E2((x, — X,) Zn:ak(xk —X)=E 26, e iaKZ{anek J}e

k=m+1 k=m+1 =1

=26 o ZakZ{H b€ ,}eki

k=m+1

k=m+1 i=1
k—m
=2Ee,ea, (b € 18 o8
, K m-1
—-m
=2.Ee a, b, E| | €

i=1

=0

2Eé e Zn:akZ[anek ,]e

k=m+1 i=0

A m+1b11em m+2(bllem+1 +b em+1e ) :0
e )+

m+3<bllem+2 + bll em+2em+1 + bll em+Zem+1
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. 2
Third term: Eli ZaKZ{Hbllek J}ek_i +ek}

k=m+1 i=1
2 2 2
— |:am+1b e m+2(b11em+l bll em+1em ) j|
3 2
+ am+3 (bllem+2 + bll em+zem+l + bll em+Zem+lem )
— E|: m+1 bll e m+2 (bll em+l +bll em+1 e ) :l
24
+am+3 (bll em+2 +bll em+2 em+l +bll em+2 em+l em )+
2, 2 2 2 2. 2 S.2 N
~a,, b, 3v,(4)+a,., (3b11 Uy (4))+am+3 (b11 Uy (4))"' ay
k=m-+1 n-2
= Uy (4)b112 Zak Zak (50)
k=m-+1 k=m+1
Hence equation (50) can be simplified as
, & n
disp x, =3 —0+30,(4by," D ai+ D ags (51)

k=m+1 k=m+1

Now differentiating equation (51) with respect to a, and equating to zero, we obtain

idispxm :%(n —0+v,(4)b,° Zak)+ Zak -2 =

dak K k=m+1 k=m+1
= 0-0+2a.0,(4)b,° =0
= a, =0

Substituting the values of a, in equation (3), we obtain optimal estimator of the missing

value as
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by

This shows that the missing value is a one-step-ahead prediction based on the past
observations collected before the missing value. This is in agreement with other studies that

have estimated missing values using forecasting (Nassiuma, 1994).
3.4.2 Estimating missing values for BL (1, 0, 1, 1) with student-t errors
The bilinear model BL (1, 0, 1, 1) with t- errors is expressed as
X, =¢x_ +b,x e, +e, where e ~t(0]) (52)
The missing value is obtained using theorem 3.9.
Theorem 3.9

The optimal linear estimate for missing value for BL (1, 0, 1, 1) with student errors is given

* n c ¢?1k7m

ke [n T 5 (¢ +1) + b, v(4)

:| (Xm+l - km+1)

Proof
The stationary BL (1,0,1,1) can be expressed as

X, = i(]‘[ (#+bue, )Jet_i re, (53)

The h-steps ahead forecast is given by
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i=1

- i( _I (¢ +B€ )}‘Hh-i +€h
j-1

and the h-steps ahead forecast error is given by

ht (i
A Z(H (¢ +b,€h | )}uh—i + €

Substituting equation (54) in equation (3), we obtain

o, el )-2g| o S ([T v I+ Zae |

E( Zn:akk m{ﬁ(¢l+bllekj) k-i T Zn:akekJ (55

=m+1 i=1 k=m+1

Simplifying the terms RHS of equation (55), we obtain
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[ ZakZ( J' (4, + bllekj)Jeki + Zn:akek]

k=m+1 =1 j=1 k=m-+1

Yoy [0 +be )b+ Tae,
e S 5T one )

k=m+1 =1 k=m+1

_ Eé . 2|:a‘m+1 (¢1 + bllem )em + am+1em+1 + am+2 (¢1 + bllekfj )(¢1 + bllekfj )em
- m

+ am+2em+2 + +am+3 (¢1 + bllem+1)(¢1 + bllem+1))(¢1 + bllem)em + am+3em+3 +..

Zakbk m_

k=m+1

[ ZakZ[ﬁ(¢+bllek_j) - Zn:akekaz

k=m+1 i= k=m+1

+ am+3 (¢1 + bllem+1)(¢l + bllem+l))(¢l + bllem )em + a‘m+3em+3 + )
2 2.2 2 2 2 2 2 2
am+1 (¢1 + bllem) em + am+1 em+l + am+2 (¢1 + Cem+1)) (¢1 + bllem) em + am+2 em+2
2 2 2 2, 2 2 2
+ a'm+3 (¢1 + bllem+1) (¢1 + bllem+l)) (¢1 + bllem) em + am+3 em+3 +..
+ am+1[(¢l + bllem)em + em+1)][am+2 (¢1 + bllem+l))(¢l + bllem)em + am+Zem+2]+

2
_ |:am+l(¢1 + b1lem)em + aerleerl + am+2 (¢1 + bllem+1))(¢1 + bllem)em + am+2em+2:|

2

Z Ay (¢ + b11 v(4) + —)

R k=m+1

where

n*r)r e

V)=V =B ="p e

Hence equation (56) becomes
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dispx,, = -2 Zak¢‘k m 1 ok z a (¢’ —+b11 V) +

k=m+1 k=m-+1

2)- (56)

Differentiating equation (56) with respect to the coefficients, we get

m+1

d { — Zakb"m+22ak(¢ —+b11v(4)+—)}

dak =m+1 k=m-+1

n n
0-2— g1 2a (" +b (@) +—-)=0
= S0 428, () + )

¢2‘1k—m
b

=  a =

The optimal linear estimate of x,,, denoted by x;, that minimizes the error dispersion error

of the estimate is thus given as

=R+ Zak(xk %)

k=m+1

” b
[n(czﬁl 1+ B4

j| (Xm+l - Rmﬂ)

m1Cma T Z ¢1 - (Xm+l - )A(m+1)
K=miL [n(¢1 +1)+c v(4)}

3.4.3 Estimating missing values for BL (0, 1,1 ,1) with student-t errors

The BL (0, 1, 1, 1) model with student-t errors is given by
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X, =b X 6, +6  +& where e ~1(0,1)
The missing values are obtained from the following theorem 3.10

Theorem 3.10

The optimal linear estimate for BL (0, 1, 1, 1) with student errors is given by

A

X, =b;X

m

etfl + 6em71

m-1

Proof

The stationary bilinear BL (0,1,1,1) is expressed as

w0 i

X = Z( &, Jet—i—l + ZLH b€, jet—j + €
= i=1\_j=1

i=1 i=

The h-steps ahead forecast is given by

i=1 j=

© i ) i
X = Z(H et—j]etm—i—l + Z( bllet+h—jJet+h—j + €
j=1 1

and the forecast error is given by

heaf ha (i
Xish = Xipp = Z(QH €j jewh—i—l + ZLH b.€n; Jenh—j +€un
j i=1\ j=1

i=1 j=1

Substituting equation (59) in equation (3), we get
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2
n k—m i h-1 i
E(Xm - X;)Z = E{(Xm - )A(m) - Zak|: [ ek—j jekil + Z[H bllek—j ]eki + ek:l }
=1\ j=1 i=1 \_j=1

k=m+1 i

k=m+1 i=1 i=

disp X, = E{(ém)— Zn:aklzkzr:n(eﬁek_jjek_i_l + %(ﬂ bllek_jJek_i +ek} }

[k=m i
] Z[ ] & jekil
Ee,)?-E 26,)e Ya] +
k=m+1 —m !
= + Z(H by€, | ]ek—i & (60)
BEAE ]

2
n k-m i k-m( i
E{ Zak[ Le & i ]ek-i—l + Z{H b8 jek—i + ek] }
keme |G\ e i1\ j-L

Simplifying each of the terms of equation (60), we obtain

k=m+1 i=1

E2(€,)e iakl:kzm(r_[ €i_j jek—i—l + kzm(ﬁ b.&y_; Jek—i + ek:|

. 2 A 2 2
=E2(€,)e (am+l {&mem—l +Ce, +€,,4 })+ E2(€,)ea,,, {&mﬂemem—l +b,e, .6, + em+2}

FE2(6,) 0,6k, 0 el +e,.s)

m+1~m

3
m+3 m+lem + bll em+2e
A 3 2
+E2(€,)ea,, {&mﬁ%emﬂemﬂemem—l + 0,780,380, 2800 T+ em+4}
=0
This implies that &, = 0.Therefore the best linear estimate is by

X = bllxm—let—l + 6Em_1

m+2

3.4.4 Estimating missing values for BL (1, 0, 1, 1) with student-t errors

The bilinear BL (1,0,1,1) model with student t errors is
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X, =@ X +b,x e +e, where e ~t(0]) (61)
The missing values are estimated based on the following theorem 3.11.

Theorem 3.11

The optimal linear estimate for BL (1, 0, 1, 1) with student errors is given by

R . n ¢2‘ k—-m
Xy = ¢Xm—1 + bllxm—lem—l + Z -

k=m+1 n 72 2 (Xm+1 o Xm+1)
ﬁ (¢1 +1) + b11 v(4)

Where

2

r(Hre

o) - E(ey = TTET

Proof

Performing recursive substitution on equation (61), the stationary BL (1, 0, 1, 1) can be

eXpresses as

X, = i (H (4, +bye, | )}H +e. (62)

The h-steps ahead forecast is given by

Xih = i(ﬂ (¢1 +b8n )}Hh—i +€in

i=1 \_j=1

and the h-steps ahead forecast error is given by
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h-1

Xt+h - )A(t+h = Z[ (¢l + bllet+h—j )}’H—h—i + eI+h (63)
j=1

i=1

Substituting equation (63) in equation (3), we have

. [ZakZ(Ji (6 bt ) o + iakekJ

disp Xy = E(e k=m+1 =1\  j=1 k=m-+1

+ EL Z”:ak‘i“( | (¢1+b11ek—j) ki T zn:akekJ (64)

k=m+1 i=1\_j=1 k=m+1
Simplifying equation (64), we obtain
First term: E(ém2)= o’

n k—m i n
Second term: — 280 { Zak Z( 1 (¢1 + bllek—j)]ek—i + Zakek]

k=m+1 =l k=m+1

— —Eé ° 2|:am+1 (¢1 + bllem)em + a'erleerl + am+2 (¢1 + bllem+1)(¢l + bllem+2)em + am+Zem+2:|
; + am+3 (¢1 + bllem+2)(¢1 + bllem+1)(¢l + b1lem)em + am+3em+3 + )

=-2 z ak¢1k_m

k=m-+1

Third term: E[ Zn:akkzr:n(li_[(@+bnek_j) i+ zn:akekJ

k=m+1 =1\ j=1 k=m+1

{( Zn: k2(¢l+bllek jj €_j +2( Zn: ak2(¢1+bllek J]ek i Zakek (Zn:akekj }

k=m+ k=m+a k=m-+1 k=m-+1

{E( k2(¢1+bllek j] €_j +E2[ Z akkirf(¢1+bllek—jjek—j Zn:akek "‘E( Zn:akekj }

=1 k=m+a i=1 k=m+1 k=m+1
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n k—m n
EZ[ Z 8y Z(¢1 + bllek—jjek—j Zakek =0

k=m+a i=1 k=m+1
n 2 n n 5
El| Dae | =] —
k=m+1 keme N —

[ 2 ak2<aa+bnek ,j e /1= A (o" + 30", )

k=m+a k=m+1

Hence equation (65) becomes

dispx,, = o2 -2 Zn:akgﬁk’moz + iaﬁ (6’0 +3c'b,°) + Zn:a,faz (66)

k=m+1 k=m+1 k=m-+1
Differentiating equation (66 with respect to the coefficientsa, and setting it to zero, we get

_[O_ _2— Zakbn(k m)"' Z a, (—¢1 +V(4)b11 +—)}

n- 2k m+1 k=m+1

—  0-26%™-" 423 (" 42 iv@abii—)=0
¢ )n—2 k(n_2¢1 (4)b,; n—2)

where

v(4) = E(et4) = nl“(”T

7 (k-m)
4

n I n
{n—Z ¢512 +v(4)b112 + n—Z}

Therefore &, =
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The optimal linear estimate of x,, given by x;, that minimizes the error dispersion error of

the estimate is thus given as

n
Xr: = )A(m + Zak(xk _)A(k)

k=m+1

=m+ n n n
ke 7261512 +Vv(4)b,,* +E

A n él(k*m) A
=Xp t z { }(Xm+l - Xm+1)

R . n ¢§ (k—m)
A 1
= ¢1Xm—1 + bllxm—lem—l + z n

n (Xk_)zk)
k=m+1 72 2

_— +v(@db,,” +——

{n_zqﬁl (4)by, n_z}

3.4.5 Estimating missing values BL (p, 0, p, p) with Student-t innovations

The pure bilinear time series model BL (p, 0, p, p) with student-t errors is

b,x e +e where ¢ ~t(0]1)

p
thz ¢|Xt—i+ _

p p

i=1 i=1 =l

The missing values can be estimated using the following theorem 3.12.
Theorem 3.12

The optimal linear estimate for one missing value X, for the general bilinear time series

model BL (p, 0, p, p) with student t-errors is given by
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Where v(4) is the fourth moment of the data given a

n*r()r?
r(re

v(4)=E(e") =

It can be estimated by v(4)=kurtosis*(variance)?
Proof

The stationary bilinear time series model BL (p, 0, p, p) is of the form

xt:Zi

p
i=1 i=1l j=

{¢ + Z ijet j }e it i i {¢s + i bsj et—j }{¢r + i bsj et—j }ét—s—r
+ ii{ﬂ + Zp: brjetfj }{¢s + Zp: bsj et—j }etsr + et (67)

r> s j=1

The h steps ahead forecast for equation (67) is given by

P o i P p p
t+h ZZH{¢ +Z sj t+h J}e +ZZ{¢S+Z Sj t+h j}{¢l‘ +jz_1:bsjet+hj}et+hsr+

i=1 i=1 j=1 s< r
p P p p
ZZ 4+ Zbrjet+h—j ¢+ stjet+h—j Cinsr T &
r> s j=1 j=1

or

Zp:iﬁ{‘ﬁ + st,ek J}Q i+ ii{f/ﬁs + Zp:bsiek—JHfér + Zp:bsjek—j}ek_s_r +

i=1 i=1 j=1 s< r (68)
p._p p p
ZZ{¢r + Zbrjek—j }{¢s + zbsjek—j }eksr + et
r> s j=1 j=1

and the forecast is
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k-1 i

{¢s + ibs € J} tsj T ZZ{¢ +Zb51ek J}{¢I’ + Zp:bsjekj}eksr +
j=1 j=1

s< r

p p
+ z {¢r + Z brjek j }{¢s + zl bsjek—j }ek—s—r + et
S j=

r> j=1

i=1 i=l j=1

There forecast error is

ikm

i=1 i=l j=1

{¢s + Zp:bSJek J} tsj T Zplzp:{(és + Zp:bsjek—j}{¢r + Zp:bsjek—j}ek_s_r

j=1 s<

+ Zp: {¢r +Zbrjek ]}{¢S +ibs ek J}e et

s j=1

+ ZH(¢2 + D508 21 + D58 o 0,8, 22 + 0.8 51+ 5 )+ {ezekfz +oe . +e } (69)

i=0 j=1

Substituting equation (69) in equation (3) and simplifying, we obtain

First term E(émz): LZ

second term  —2E(x, —%,) D_a (X — %)

k=m+1

k=m+1 s< r j=1

p P p p
- 2ém b Zak ot ZZ{ S + bs t+h— j}{¢l’ + zbsjewh—j}ewh—s—r =
p P p
+ ZZ{¢r + br t+h— J}{
=1

p
¢s +zb51et+h j} t+h—s—r +e

j=1
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- 2ém s iak Zp: Z{¢ + Zijek J}{¢r + ibsjek—j}ek—s—r

k=m+1 s<rand s> r

~ 24—nzak¢r¢s for s+r=k-m

— ) k=m+1

0 otherwise

Third term

ikz”‘ﬁ{«ﬁ +Ybe, }e +zz{¢ DIXS }{¢ Zb}e
E i=l i=1 j=1 j=1 s< r j=1
+ ii{fﬁ +anek JH¢ +ibsjek_,}ek_s_r + €
r> s j=1

= Z {Z Z by’ e J+év(4)bjf}

k=m+1 j=1,5#]

Equation (69) simplifies to

dispx,, :—2— Zqﬁ(k R Z —24ak¢¢

k m+1 k= m+1
n p n
+ af{Z—(/ﬁf Z ——by* +e, J+Zv(4)b” } (70)
k=m+1 s=1 n- 2 j=ls#j n-— 2
where

21 (5 (n-4)

v(4) = E(e,") = %
rGre

Differentiating equation (71) with respect toa, , we have
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idisp=— Z¢(k m)/s+ n b6+
da,

=m+1

-2

ZaK{Zp:n Z —b +€,._ J+ZV(4)b“ }:

s=1 j 1S¢j

Solving fora, , we get

Corollary
For p=1, we have the bilinear model BL (1, 0, 1, 1). The optimal linear estimate is given by

n

. . X G A
=@X, , +b,x, .6, - R
¢1 1 bll 1 1 kzm;—l (1+¢l +V(4)bll k)

3.5 Estimating missing values for bilinear time series model with GARCH innovations

The bilinear time series X, of order BL (p, g, m, k) with GARCH innovations satisfies the

difference equation

p
X = Z¢. X +26bt—j +zzbijxt—iet—j + € . (71)
i=1 j=1

where 0,¢ and b;; are constants while e, is a purely random process and 6,=1 and

i q p
e /v, ~N@Oh), e =nhi, h =q +Zaiet—i +Zﬂiht—i (72)
i1 =
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with the inequality conditions o, >0, «; 20 fori=l,....q, B, =0, fori=l,...,p to ensure

that the conditional variance is strictly positive. Missing values for BL (1, 0, 1, 1) can obtain

from the following theorem 3.13.
3.5.1 Estimating missing values for BL (0, 0, 1, 1) time series model with GARCH
innovations

The simplest pure bilinear time series model of order one, BL(0, 0, 1, 1) is of the form

X = bllxt—let—l +& (73)
with e; distributed as specified in equation (43).
Theorem 3.13

The optimal linear estimate for missing observation for BL (0, 0, 1, 1) with GARCH errors is

given by

Proof

Through recursive substitution of equation (73), the stationary BL (0, 0, 1, 1) is obtained as

X = i{ll_[ blletfj }eti +€

By adding h to t in the equation, the h-steps ahead forecast is
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i=1

t+h Z{H bll t+h— |}et+h i +et+h

Therefore the forecast error is

h-1 i
Xt+h - )’zt+h = Z {H bllet+h i }etm i + et+h (74) '

i=1 1

or it can also be represented as

ht
X, = Z {H by1€ }eki + € (75)-
i1 | -1

Substituting equation (75) in equation (3), we have

n n 2
dlSp Xn = E(Xm _)zm)z _ZE(Xm _)’Zm) zak(xk _)’ik)—}_ E{ zak(xk _)’Zk)}

k=m+1 k=m+1

=E(é, ) -2E(,) Z akZ{ﬁbllet+h |}eki + €&

k=m+1 i=1

+ E{k%?k kzm;lak Z{H by l}ek_i +e, }2 (76)

Simplifying each term of equation (76) separately, we have

First Term:  E(x, —%,)>=h

m m

2nd Term:  E2((X, — %) iak(xk ~%)=E 28, e iakZ{anek ,}e

k=m+1 k=m+l =l
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) 2
Third term: E{ > a, Z{anek J}ek_i +ek}

k=m+1 i=1

2 2 2 2 2 3
|:am+1b e +am+2 (bll em+1em )+ am+3 (bllem+2 +b11 em+2em+1 +b11 em+2em+1 ) za ek

k=m+1
4 4 2 4
m+l bll e m+2 (bll e +1 +b11 em+l em )
4 4 2 2 4
= E +am+3 (bll em+2 +b11 em+2 em+l +bll em+2 em+1 em )
n
2
+( Zakek)
L k=m+1

~a,,°,2(3h,7) +a,, b, 230, )+ 2y (0,230, ,0))+ D alh?

k=m+1
n n
2 21 2 21,2
=b, §3akhk + Eakhk

k=m+1 k=m+1

Hence equation (77) can be simplified as

disp x, =h, +b,* > 3a?h,*+ > alh’

k=m+1 k=m-+1

Now differentiating equation (78) with respect to a, and equating to zero, we obtain

idispxm - (h b7 Y3ath’+ Yah?)=0
dak k=m+1 k=m+1

- 0-0+6ahb.’+ahb’ =

= a =0

Substituting the values of a, in equation (3), we obtain optimal estimator of the missing

value as
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This is the same result we obtained for pure bilinear time series model whose innovations are
distributed. This shows that the missing value is a prediction based on the past observations
collected before the missing value. This is in agreement with other studies that have

estimated missing values using forecasting.
3.5.2 Estimating missing values for BL (1, 0, 1, 1) with GARCH innovations
The bilinear BL (1,0,1,1) model with GARCH innovations errors is
X, =@ X, +byX 8 +8€ (79)
Where e is distributed as specified in equation (79). The estimate of the missing value is
obtained using theorem 3.14.

Theorem 3.14

The optimal linear estimate for BL (1, 0, 1, 1) with GARCH errors is given by

R n ¢? k—m
Xn = ¢1Xm—1 + bllxm—lem—l + Z .

~ (X, —X,)
S (hy” +30,°0 +1)
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Proof

The stationary bilinear time series model with GARCH errors of order BL (1, 0, 1, 1) can be

expressed as

X, = i(l‘[ (4, +bue, | )]eti re, (90)

The h-steps ahead forecast is given by

Xivh = i(ﬂ (¢ +be )}Hhi +€in (91)

i=1 \_j=1

and the h-steps ahead forecast error is given by

h-1( i
Xt+h - )/Zt-%—h = Z[H (¢1 + bllet+h—j )}H—h—i + et+h (92)

i=1 \j=1

Substituting equation (92) in equation (3), we have,
n k-m( i n
é a +b,e . + ) ae
disp x, =Ee,?)-2€ [kzlkzl(, 1(¢1 ! k“)}k" P kj

k=m+1 =l k=m+1

¥ E[ Zn:akin[jil(qﬁl +b11ek_j)]ek_i ¥ iakek]z (93)

Simplifying equation (93), we obtain
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|2, ( iakk_zm(ﬂ(@ +buekj)Jeki : iakek}

k=m+1 i=1\ j=1 k=m+1

)2 .( ZakZ(j 1(¢1+b11ek—j)]ek—i + Zakek) =2a,4" ",

k=m+1 i=1 k=m+1

2
n k—m i n
E( ZakZ[H(b+ cek_j)]ek_i + Zakekj =
k=m+1 i=1 j=1 k=m+1

— E|:am+l (¢1 + I011em)em + am+lem+l + am+2 (¢1 + bllem+1)(¢l + bllem)em + am+2em+2

+ am+3 (¢1 + bllem+2)(¢1 + bllem+1)(¢1 + bllem)em + am+3em+3 + )

2 2 2 2
= E + am+3 (b + Cem+l)2 (b + Cem+l))2 (b + Cem)zem + am+3 em+3 +..
+ am+1 [(b + Cem )em + em+1)][a‘m+2 (b + Cem+l) )(b + Cem )em + am+2em+2 ]+

= Slal(gh, +3b,%, +h,)]

k=m+1

Hence equation (88) becomes

dispx, =h, -2 Y ab"h + > [a2 @, +30,207 +h)]

k=m+1 k=m+1

Differentiating equation (94) with respect to the coefficients, we get
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a'm+1 (b + Cem) em + a‘m+l em+1 + am+2 (b + Cem+l)) (b + Cem) em +a €

m+2 ~“m+2
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i[hm ~2 Y ab ™ + Yal(#h, +b,23n + hk)} =0

dak k=m+1 k=m+1

= 0-2b*"h, +2ah, (4,°+3b,°h +1)=0

¢2‘1k—m
" (4 +30,°h, +1)

= a,

Therefore the estimate of the missing value for the BL (1, 0, 1, 1) is

R n ¢? k-m
= Xo = X +0X 180 + Z .

< X, — Xy
G (B +30,°h, +1) 0% =)

3.5.3 Estimating missing values for BL (p, 0, p, p) with GARCH errors

The bilinear time series BL (p, 0, p, p) is given by

p p P
Xy = ; P X +Z:1: Zl: biX. i€ +& (95)

where
i q , p
e /v, ~N@Oh), e =nh, h =a +Zaiet—i +Zﬁi hei
i=1 i=1

with the inequality conditions a, >0, «; 20 fori=l,...,q, B, =0, fori=1,....p to ensure

that the conditional variance is strictly positive. The estimate of the missing value for BL (p,

0, p, p) with GARCH errors is given in theorem 3.15.

Theorem 3.15
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The optimal linear estimate for one missing value X, for the general bilinear time series

model BL (p, 0, p, p) is given by

Proof

The stationary bilinear time series BL (p, 0, p, p) can be expressed as

{¢ + zbSJeI j} t-sj + ii{¢s + ibsjet—j}{¢r + ibsjet—j}et—s—r

+ Zplzp:{ }{¢s + Zp:bsjetj }etsr + et

r~ s j=1

Therefore h steps ahead forecast is given by

p o i p P p
t+h ZZH{¢ +Z sj t+h J}e +ZZ{¢S+Z Sj t+h j}{¢l‘ +jz_;bsjet+hj}et+hsr+

i=1 i=1 j=1 s< r
p P p p
ZZ ¢r + bejeHh—j ¢s + stjet+h—j et+h—s—r + et
r> s j=1 j=1

or

p o i p P p p
X, :ZZ 1{;15 +stjek J}e +ZZ{¢S+Z;ijekj}{¢r+;bsjekj}eksr+

i=1 i=l j= s< T
p P p p
D24+ D b 14+ D obie B, +E,
r> s j=1 j=1



The forecast can be expressed as

iZﬂ{gﬁ +stjek J}e j + p Zp:{‘ﬁs +Zp:bsjek—jH¢r +Zp:bsjek—j}ek-s_r

i=1 i=1 j=1 s< r

+ZZ{¢r +Zbrjekj}{¢s +stjekj}eks r +€

r> s j=1

and the h-steps ahead forecast error is

, zikzmﬁ{qé +st,ek 1} » +ZZ{¢ +stjek J}{¢r+§bsjek_,}ek_s_,

i=l i=1l j=1 s< r

+ ZZ{¢ + Zbrjek J}{¢s + stjekj}eksr + et

r> s

o i

ZH (@ + b8y 51 + 058 )(gzek—Zi—Z + 08 o1 +€ )"‘ {ezekfz +06 ., +€ }
i=0 j=1

97)

Substituting equation (97) in equation (3) and simplifying, we get

Firstterm  E(x,—-X,)°=

Second term - 2E(x,, — %) D a. (X — %)=

k=m+1

MS

H{¢s +Zb51et+h ]} t-sj
. n P P p
- 2em * zak + 22 S + zijet+h j}{¢r + stjet+h—j }et+h—s—r +
j=1

k=m+1 s< r { j=1

p p
¢r + br t+h—]j }{¢s + stjet+h—j }euhsr + et
j=1 j=1
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20 S0 350 Tom o =2 S

k=m+1 i=l i=l j=1 k=m+1

- 2ém b Zn:ak Zp: Z{¢ + Zijek J}{¢r + Zp:bsjekj}eksr

k=m+1 s<rand s> r

= Z4ak¢,¢shk for s+r=k-m

k=m+1

= 26,0 e, =0

k=m+1

Third term

i=L i=1 j=1

p P P p
{¢s +zbsjekj}etsj +ZZ{¢S + bsjek ]}{¢ +stjek j}ek s—r
=t j=1

s<  r

ii{¢r + ibrjek—j}{¢s + stjek—j}ek—s—r + €
i1

r> s j=1

= Z ak{z¢sa + ZbSJ o’ +e._ J+23b ha}

k=m+1 j=1,5#]

which simplifies to

-2 Zh g™’ + Z4ak¢¢h + Z ak{Zg;ﬁh + stj he+e. ]+Z3b h } =0 (98)

k=m+1 k=m-+1 k=m+1 s=1 j=1s#]

Differentiating equation (98) with respect toa, and setting the result to zero, we obtain
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didusp =-2 Z he (8™ + ZZak¢¢)+

k=m+1 k=m+1

j=1s#]

Zak{2¢ h, + ZbSJ h, +23b h } (99)

Solving fora, , we get

SR (@ 4 > 2a,44)

ak — k=m+1 k=m+1

{z(/ﬁh + stj h, +e._ J+Z3b h }

j=1,5%]

The missing value estimate is therefore given by

Corollary

For p=1, we have the bilinear model BL (1, O, 1, 1). The optimal linear estimate is given by

. n ~ . - g .
X' =@X  +bx 6 — X
¢l 1 bll 1 1 k;rl (1+¢1 +3bll h ) ( k)

Finally, one observation that we can make about the derived optimal linear estimates is that
for pure bilinear time series models, the estimate of missing values is the one-step-ahead

forecast error. For the other models, the estimate is also a function of observations after the
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missing value point which are given weights depending on how close they are to the to the

missing value point.
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CHAPTER FOUR

ESTIMATION OF MISSING VALUES (RESULTS)

4.1 Introduction

In this section, the results of the estimates obtained using the optimal linear estimation,
artificial neural networks and exponential smoothing methods based on data generated from
bilinear models with different innovations are given. The data with normally distributed
innovation was simulated from the models: BL(0,0,1,1), BL (0,0,2,1), and BL(1,0,1,1). The
data simulated for student t-distribution included BL(0,0,1,1), BL(0,0,2,1) and BL(1,0,1,2).
For GARCH distribution the data was simulated from the models: BL(0,0,1,1), BL(1,0,1,1)
and BL(0,0,2,1). The R software was used to generate the bilinear random variables. The first
1000 observations were discarded to reduce the influence of the initial data value used in the
simulation. One hundred samples of size 500 were generated for each model and missing
values created at positions 48, 293 and 496. The mean absolute deviation and mean squared
errors were calculated for each model used. Simulation results are given in Tables 4.1-4.9

and Figures 2-10.

4.2 Time series plots of the bilinear models based on simulated data

The data generated were plotted in graphs as depicted in Figures 2-10. These graphs are
characterized by sharp outbursts. This is clearly evident in the graph of BL (0, 0, 1, 1). Sharp
outburst is one of the characteristics of bilinear time series. For bilinear time series with

student-t distributions, the range of the values is also large.
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Figure 2: BL (0, 0, 1, 1) with Normally Distributed Innovations
Figure 2 displays a classic example of a bilinear time series data. It is evident that there are

sharp out-bursts at position 50, 241 and 451. This is a pure bilinear series with the coefficient
of the bilinear term, b, =0.2. It is also evident that the series is stationary since it has a

constant trend.

95



4000000

2000000

_N
—
———

000000+

x(t)_BL00Z21

-2.000000

-4.000000-

T
T 3 4506 T80 B 100 11120 13 141 150 161 171 181 191 201 2011 221 231 241 251 260 271 261 261 301 311 320 331 340 351 361 371 361 391 400 411 421 430 441 451 461 471 461 491

Sequence number

Figure 3: BL (0, 0, 2, 1) with Normally Distributed Innovations
Figure 3 displays a graph of a pure bilinear time series with more frequent outburst. The

series has a constant trend hence it is stationary.
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Figure 4: BL (1, 0, 1, 1) with Normally Distributed Innovations

The series is not only stationary but the outbursts are less conspicuous.
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Figure 5: BL (0, 0, 1, 1) with t-Distributed Innovations
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Figure 5 displays a bilinear time series with a few outbursts which are very conspicuous. This
graph is similar to the one of the pure bilinear time series given in Figure 2 with normal

innovations. The series has a constant trend hence it is stationary.
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Figure 6: BL (1, 0, 1, 2) with t-Distributed Innovations
It is observable that the series is stationary and has sharp outburst of opposite signs. This is

different from the other bilinear time series graphs discussed above.
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Figure 7: BL (0,0,2,1) with t-Distributed Innovations
Figure 7 displays the graph of a bilinear time series with more frequent outbursts of opposite

signs. This figure is similar to the graph of BL (0, 0, 2, 1) model with normal distribution.
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Figure 8: BL(0, 0, 2, 1) with GARCH Distributed Innovations
Figure 8 displays the graph of BL (0, 0, 2, 1). It has numerous sharp outburst of opposite

signs. It is similar to the graph of BL (0, 0, 2, 1) with the student-t and normal innovations.
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Figure 9: BL (0, 0, 1, 1) with GARCH Innovations
Figure 9 has numerous sharp outbursts of the opposite signs at various positions in the data.
It is slightly different from BL (0, 0, 1, 1) with either the normal innovations or the student-t

innovations since it has more sharp outbursts. These again are of opposite signs.
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L]
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Figure 10: BL (1, 0, 1, 1) with GARCH Innovations

This graph is characterized by one conspicuous outburst at position 201. The data is
stationary. The zero trends in the graph imply that the missing value estimate should be close
to zero. This confirms one of the assumptions made in generating the data that the time series
data are stationary. This implies that whereas the student-t and normal distributions are close
in structure they are different from those of GARCH distributions. An interesting observation
is that the time series models for normal and student distributions have similar structure
which is quite different from that of the GARCH distributions. Hence estimates of missing
values for normal and student-t distribution should have some common characteristics which

are quite distinct from those of the GARCH distribution.
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4.3 Efficiency measures for bilinear models with different distributions

Data was analyzed using several software and the results obtained are summarized in Tables
(1-9). From the analysis, the study found that the method for imputing missing values was
correlated with the probability distribution of the innovation sequence of the data. This is
similar to the findings of Musial, et al. (2011) who used different nonparametric methods to
estimate missing values and concluded that each method exhibited advantages and
drawbacks, and that the choice of an approach largely depends on the properties of the
underlying time series and the objective of the research. More detailed analysis for each table

is given below.

Table 1: Efficiency Measures for BL (0, 0, 1, 1) with normal innovations

MISSING MAD MSE

POSITION OLE ANN EXP OLE ANN EXP

48 0.764572 0.84293 0.762066 1.033225 1.223745 1.054167
293 0.887287 0.900142 0.908151 1.166085 1.259637 1.215906
496 0.949875 0.93157 0.952156 1.497507 1.363035 1.474815
Total 2.601734 2.674642 2.622373 3.696817 3.846417 3.744888
Mean 0.867245 0.891547 0.874124 1.232272 1.282139 1.248296

From Table 1, it is evident that the OLE estimates had the lowest mean square error
(MSE =1.232272) among all the estimates of the missing values for the different missing
data points positions, followed by EXP smoothing estimates (MSE=1.248296). Estimates

based on ANN had the highest mean square error (MSE=1.282139). This implies that OLE
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estimates were the most efficient estimators for the bilinear time series model BL (0, 0, 1, 1)
with normal errors followed by the EXP estimates while ANN estimates were the least
efficient. It is also evident that for all the estimators, the position of the missing value had a

negative correlation with the efficiency of the estimates obtained.

The estimates for position 48 were based on data in the neighborhood of 48 for OLE and 48
for ANN. This also applied to the data point 293 and 496 where data points in the
neighborhood of 293 and 496 were used respectively. It can be noted that the efficiency of
the estimates generally did not improve with the sample size about the point of the missing

value.

Table 2: Efficiency Measures for BL (1, 0, 2, 1) with normal innovations

MISSING MAD MSE

POSITION OLE ANN EXP OLE ANN EXP

48 0.792612 1.135251 0.98159 1.042752 2.620982 1.542025
293 0.759908 0.870468 0.811869 0.906356 1.602965 1.078504
496 0.803375 0.862982 0.932996 0.976211 1.214815 1.369218
Total 2.355895 2.868701 2.726455 2.925319 5.438762 3.989747
Mean 0.785298 0.956234 0.908818 0.975106 1.812921 1.329916

From Table 2, it is clear that the OLE estimates of missing values were the most efficient
(MSE=0.975106) for the different missing data point positions. This was followed by EXP
smoothing estimates (MSE=1.329916). It is also evident that the size of the set of values used

to estimate the missing values had an effect on the efficiency of the estimates obtained. All
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estimates for data points 48 were less efficient than estimates obtained at data points 293.

However, as the data point was increased to 496, the efficiency generally did not improve.

Table 3: Efficiency Measures for BL (1, 0, 1, 1) with normal innovations

MISSING MAD MSE

POSITION OLE  ANN EXP OLE ANN EXP

48 0.842466 0.946487 0.872985 1.122368 1.57565 1.296111
293 0.893107 0.871257 0.907073 1.239053 1.246586 1.290295
496 0.951015 0.948569 0.914346 1.442964 1.46972 1.369107
Total 2.686588 2.766313 2.694404 3.804385 4.291956 3.955513
Mean 0.895529 0.922104 0.898135 1.268128 1.430652 1.318504

From Table 3, it can be concluded that based on MSE, the OLE estimates of missing values
were the most efficient (MSE=1.268128) for the different missing data point positions
followed by EXP smoothing estimates (MSE=1.318504). It is also evident that the size of set
of values used to estimate the missing values had a negative correlation with the efficiency of
the estimates obtained. All estimates for data points 48 were more efficient than estimates

obtained at data points 496.
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Table 4: Efficiency Measures for BL (0, 0, 1, 1) with student-t innovations

MISSING MAD MSE

POSITION OLE ANN EXP OLE ANN EXP

48 0.927299 1.252003 1.190896 1.718008 2.706119 2.631451
293 0.978332 0.961104 1.107915 2.178498 1.802398 2.35478
496 0.897052 1.188884 1.14698 1.347372 2.922418 2.977324
Total 2.802683 3.401991 3.445791 5.243878 7.430935 7.963555
Mean 0.934228 1.133997 1.148597 1.747959 2.476978 2.654518

From Table 4, it can be concluded that based on MSE, the OLE estimates of missing values

were the most efficient (MSE=1.747959) for the different missing data point positions

followed by ANN estimates (MSE=2.476978). It is also evident that the size of the set of

values used to estimate the missing values had a positive correlation with the efficiency of

the estimates obtained. All estimates for data points 48 were less efficient than estimates

obtained at data points 496.
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Table 5: Efficiency Measures for BL (0, 0, 2, 1) with student-t innovations

MISSING MAD MSE

POSITION OLE ANN EXP OLE ANN EXP

48 0.804529 0.992834 0.82809  1.211077 1.741109 1.293227
293 0.671182 0.800902 0.720927 0.914355 1.297314 1.088236
496 0.654064 0.64545 0.680498 0.836314 0.8832 0.863463
Total 2129775 2.439186 2.229515 2.961746 3.921623 3.244926
Mean 0.709925 0.813062 0.743172 0.987249 1.307208 1.081642

From Table 5, it can be concluded that based on MSE, the OLE estimates of missing values
were the most efficient (MSE=0.987249) for the different missing data point positions
followed by EXP smoothing estimates (MSE=1.081642). It is also evident that the size of the
set of values used to estimate the missing values had a positive correlation with the efficiency
of the estimates obtained for all the estimators. All estimates for data points 48 were less

efficient than estimates obtained at data points 293 and 496. The estimates became more

efficient as the position of missing data increased.
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Table 6: Efficiency Measures for BL (1, 0, 1, 2) with Student-t innovations

MISSING MAD MSE

POSITION OLE ANN EXP OLE ANN EXP

48 1.05252 1.05009 1.18255 249592  2.08018 2.97117
293 1.25008 1.06888 1.40457 2.63802 2.35919  3.44825
496 1.41045 0.94823 1.45937 4.1928 1.94371  4.3707
Total 3.71305 3.0672 4.04649 9.32674  6.38308  10.79012
Mean 1.237683 1.0224  1.34883 3.108913 2.127693 3.596707

From Table 6, it can be concluded that based on MSE, the ANN estimates of missing values
were the most efficient (MSE=2.127693) for the different missing data point positions
followed by OLE estimates (MSE=3.108913). It is also evident that the size of the set of
values used to estimate the missing values had mixed results on the efficiency of the

estimates obtained. Generally the estimates showed a negative correlation with the size of the

position of the missing value.

We can conclude that OLE estimates generally give the optimal estimates of missing values

and that the size of the position of the missing observation had a positive correlation with the

efficiency of the estimates obtained.
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Table 7: Efficiency Measures for BL (0, 0, 1, 1) with GARCH innovations

MISSING MAD MSE

POSITION OLE ANN EXP OLE ANN EXP

48 0.804529 0.992834 0.82809 1.211077 1.741109 1.293227
293 0.661487 0.788114 0.719507 0.851441 1.20582 1.023331
496 0.654064 0.64545 0.680498 0.836314 0.8832 0.863463
Total 2.12008 2.426398 2.228095 2.898831 3.83013 3.180021
Mean 0.706693 0.808799 0.742698 0.966277 1.27671 1.060007

From Table 7, it can be observed that based on MSE, OLE estimates of missing values were
the most efficient (MSE=0.966277) for the different missing data point positions followed by
EXP smoothing estimates (MSE=1.06007). It is also evident that the size of the set of values
used to estimate the missing values had a positive correlation with the efficiency of the

estimates obtained. The higher the position of missing data, the more efficient the estimates

obtained.
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Table 8: Efficiency Measures for BL (0, 0, 2, 1) with GARCH innovations

MISSING MAD MSE

POSITION OLE ANN EXP OLE ANN EXP

48 1.203124 1.146296 1.260539 2.3505 2.264935 2.609242
293 1.136119 0.978307 1.110822 3.409059 1.783063 2.251697
496 0.964016 0.887704 1.045276 2.108792 1.778419 2.052729
Total 3.303259 3.012307 3.416637 7.868351 5.826417 6.913668
Mean 1.101086 1.004102 1.138879 2.622784 1.942139 2.304556

From table 8, it can be concluded that based on MSE, the ANN estimates of missing values

were the most efficient (MSE=1.942139) for the different missing data point positions

followed by EXP estimates (MSE=2.304556). It is also evident that efficiency of the

estimates improved as the position of the missing value increased.
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Table 9: Efficiency Measures for BL (1, 0, 1, 1) with GARCH innovations

MISSING MAD MSE

POSITION OLE ANN EXP OLE ANN EXP

48 1.136119 0.978307 1.110822 3.409059 1.783063 2.251697
293 0.964016 0.887704 1.045276 2.108792 1.778419 2.052729
496 1.276248 1.003744 1.300622 3.591108 2.326084 3.63698
Total 3.376383 2.869755 3.45672 9.108959 5.887566 7.941406
Mean 1.125461 0.956585 1.15224 3.03632 1.962522 2.647135

From Table 9, it can be concluded that based on MSE, the ANN estimates of missing values
were the most efficient (MSE=1.962522) for the different missing data point positions
followed by EXP estimates (MSE=2.647135). It is also evident that efficiency of the

estimates had a mixed correlation as the position of the missing data increased.

We can conclude that for bilinear time series with GARCH innovations, the ANN estimates
were generally more efficient than the estimates obtained from the other estimators. It is
evident that the efficiency of the estimator used was correlated with the distribution of the
innovations of the bilinear time series. Further, the efficiency of the OLE estimators for
normally distribution had a positive negative correlation with the position of the missing

data.

For student distribution, the OLE estimators were the most efficient but not as remarkable as

in the normal distribution. For the bilinear time series with GARCH innovations, the ANN
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estimators were generally more efficient than the other estimators used. The estimators had a
positive negative correlation with the position of the missing data a positive negative

correlation with the position of the missing data.

The figures below (Figure 11-19) show the deviations between the actual data and the

estimated values of BL (1, 0, 1,1) for normally distributed innovations.
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Figure 11: Actual Values vs OLE Estimates for with Missing Value at 48 for BL (1, 0, 1,
1).

The pattern of the actual values and the estimated values are similar indicating the efficiency

of the results.
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Figure 12: Actual Values vs ANN Estimates for Missing Value at 48 BL (1, 0, 1, 1)

The patterns of the two graphs are similar. There is a higher deviation between actual values

and the actual values.
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Figure 13: Actual Values vs EXP Estimates for with Missing Value at 48 for BL (1, 0, 1,
1).
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There is higher deviation between the actual values and the estimated values as evidenced by

higher disparity between the two graphs..
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Figure 14: Actual Values vs OLE Estimates for Missing Value at 293 for BL (1, 0, 1, 1)

There is higher deviation between the actual values and the estimate.
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Figure 15: Actual Values vs ANN Estimates for Missing Value at 293 for BL (1,0, 1, 1)

There is a significant disparity between the actual values and the estimates obtained.
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Figure 16: Actual Values vs EXP Estimates for Missing Value at 293 for BL (1,0, 1, 1)

There is high disparity between the actual values and the estimated values.
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Figure 17: Actual Values vs OLE Estimates for Missing Value at 496 BL (1,0, 1, 1)

There appears to be high disparity between the observed values and the estimated values.
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Figure 18: Actual Values Vs ANN Estimates for Missing Value at 496 for BL (1,0, 1, 1)

Higher deviation between the estimated values and the actual values is an indicator that the

estimates are less efficient.
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Figure 19: Actual Values vs EXP Estimates for Missing Value at 496 for BL (1, 0, 1, 1)
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The estimates have the shape of the moving average values. We can conclude that for
bilinear time series data with normal errors, the OLE estimates gave the most efficient
estimates of the missing values. It is also evident that the efficiency of the estimates had a
negative correlation worsens with the position of the missing data. For the EXP and ANN
the results were mixed. In all the above cases ANN estimates had the least efficient

estimates obtained.
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This study had five objectives; the first three was concerned with the derivation of the
estimators; the fourth one dealt with nonparametric estimators while the last one involved the
comparison of the efficiency of the estimates obtained. To measure the efficiency and
accuracy of the estimates, simulation studies were conducted. One hundred samples of size
500 each was generated using the R software and missing values were created at random at
data positions 48, 293 and 496. The mean square error was used to determine the efficiency
of the estimates obtained using three techniques: optimal estimates, artificial neural networks

and exponential smoothing.

For pure bilinear time series model BL (0, O, p, p), the missing value was found to be
equivalent to the one—step-ahead forecast based on the lagged observations before the point
of the missing value. All the observations beyond the point of missing values played no role
in estimating the missing value. For the general bilinear time series models BL (p, O, p, p),
the estimate not only consisted of the forecasted value based on the previous observations but
in a few the observations after the missing value contributed to the estimate. Weights were
attached to these observations with data closest to the point after the missing having higher

more weights attached.

Since different distributions and missing positions were used, it was imperative to determine

how these factors affected the efficiency of the estimates of missing values. The study found
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that artificial neural networks gave more efficient estimates for GARCH distribution
compared to the optimal linear estimates and exponential smoothing. In fact, optimal linear
estimates were the least efficient. For normally distributed data, optimal linear estimates were
most efficient compared to both the artificial neural network estimates and exponential

smoothing estimates.

As far as the relationship between the position of missing value and efficiency of the
estimator is concerned, the study had mixed findings. The estimates based on the ANN
generally improved when the position of the missing value was large. That is, estimates at
position 496 were efficient than estimates at position 48 or 293. For GARCH distribution,
cases of non-convergence of the estimates when the position of the missing value was low
(48) were frequent, in fact in some cases it was 45%. This meant that only data of size 55%
was used to compute the performance measures. This also occurred for missing value points
at 293 and 496 where we had several failed convergences. When the position of the missing
value was closer to 500, the efficiency of the estimates improved. For normally distributed

data, position of the missing value gave mixed results on the efficiency of the estimates.

5.2. Recommendations

The study recommends that for bilinear time series data with normal and student t-
innovations, OLE estimates be used in estimating missing values. For bilinear time series
data with GARCH distribution, ANN estimates may be used. The study found that OLE
estimates do not improve with the position of the missing data. That is the further the

missing data point is from the first data collected, the less efficient the estimate becomes.
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5.3 Recommendation for further research

e More research needs to be done on whether the accuracy of an imputation method
depends on the distribution of the data.

e A more elaborate research should be done to compare the efficiency of several
imputation methods such as K-NN, Kalman filter and estimating functions, genetic
algorithms, besides the three used in this study.

e Derivation of estimates of missing value for ARMA time series models with different
distributions such student-t, normal and GARCH distributions should be undertaken.

e Derivation of estimates of missing values for bilinear time series with infinite
variance should be undertaken.

e Application of the derived estimates to real data
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APPENDIX

Appendix 1: Program codes used in simulation

# The R program BL(0,0,1,1) Normal
b1<-0.2
e<-c()
e[1]<- rnorm(1)
x <-¢()
X[1]<-c(e[1])
set.seed(0006412)
for (i in 2:1500) {
e[i] = rnorm(1) # generate noise value
X[i] = b2*x[i-1]*e[i-1]+ e[i] # calculate x using the model
}
t<- x[-1:-1000]
y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-min(y))
n<-round(z,7)

summary(y)
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# The R program (BL0011_GARCH(1,1)
bl<- 0.9: b2<-0.64; s<-0.03; b3<-0.135;bd<--0.17
h<-¢()
X <-C|)
e<-(()
2<-C()
e[1]<- morm(1)
z[1]<-rnorm(1)
h[1]<-c(sqrt(s))
X[1]<-c(z[1]*h[1])
set.seed(90033134)
for (i in 2:1500) {
e[i] = rnorm(1) # generate noise value
2{i]=rnorm(1)#generates noise value
hi]= abs(sqrt(s+b2*e[i-1)*2+b3*h[i-1]))# conditional variance is strictly positive
X[i] =bd* x[i-1]+b1*x[i-1]*e[i-1)+ z[i]*h[i] # calculate x using the model
}
t<- x[-1:-1000]
y<-round(t,7)
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# The R program (BL1012_studentErrors)

b12<-0.4; b1=0.2

sigma<-1

h<-c()

e<-c()

z<-¢()

e[1:2]<-rt(2,7)

x <-¢()

x[1:2]<-c(0, e[1])

set.seed(02848151)

for (i in 3:1500) {
eli] = rt(1,7) # generate noise value
X[i] = b1*x[i-1]+b12*x[i-1]*e[i-2]+ e[i] # calculate x using the model

}

t<- x[-1:-1000]

y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-min(y))

n<-round(z,7)

Y

# The R program (BL1011_Normal)
b1l<-0.1; b2<--0.2
e<-c()
e[1]<- rnorm(1)
x <-c()
x[1]<-c(0)
set.seed(01009821)
for (i in 2:1500) {
e[i] = rnorm(1) # generate noise value
x[i] = b1*x[i-1]+b2*x[i-1]*e[i-1]+ e[i] # calculate x using the model
}
t<- x[-1:-1000]
y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-min(y))
n<-round(z,7)

Yy
n
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# The R program BL(1,0,1,1) GARCH(1,1)
bl <- 0.9; b2<-0.64; s<-0.03; b3<-0.135;b4<- -0.17
h<-c()
x <-¢()
e<-c()
2<-¢()
e[1]<- rnorm(1)
z[1]<-rnorm(1)

h[1]<-c(sqrt(s))

x[1]<-
c(z[1]*h[1])
set.seed(580173)
for (i in
2:1500) {

e[i] = rnorm(1) # generate noise value
z[i]=rnorm(1)#generates noise value
h[i]= abs(sqrt(s+b2*e[i-1]*2+b3*h[i-1]))# conditional variance is strictly positive

x[i] =b4* x[i-1]+b1*x[i-1]*e[i-1]+ z[i]*h[i] # calculate x using the model

t<- X[-1:-
1000]
y<-round(t,7)

summary(y)
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# The R program (BL(0,0,2,1) _Normal_Errors)
b21<-0.4; b1=0.2
h<-c()
e<-c()
2<-¢()
e[1:2]<- rnorm(2)
z[1:2]<-rnorm(2)
x <-c()
X[1:2]<-c(e[1].e[1])
set.seed(239)
for (i in 3:1500) {
e[i] = rnorm(1) # generate noise value
X[i] =b21*x[i-2]*e[i-1]+ e[i] # calculate x using the model
}
t<- x[-1:-1000]
y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-min(y))
n<-round(z,7)

Y
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# The R program (BL1011 Normal)
bl<-0.1; b2<--0.2
e<-c()
e[1]<- rnorm(1)
X <-¢()
X[1]<-c(e[1])
set.seed(01009821)
for (i in 2:1500) {
e[i] = rnorm(1) # generate noise value
X[i] = b1*x[i-1]+b2*x[i-1]*e[i-1]+ e[i] # calculate x using the model
¥
t<- x[-1:-1000]
y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-min(y))
n<-round(z,7)

summary(y)
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# The R program (BLO011_student)
b11<-0.4
e<-c()
z<-¢()
e[1:2]<- rt(2,7)
x <-¢()
X[1:2]<-c( e[1], X[1]*e[1]+e[2])
set.seed(01018848)
for (i in 3:1500) {
e[i] =rt(1,7) # generate noise
value
x[i] =bl1*x[i-1]*e[i-1]+ e[i] #
calculate x using the odel
¥
t<- x[-1:-1000]
y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-min(y))
n<-round(z,7)

y
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# The R program General_BL(1,0,1,2) student)
b12<-0.3; b1=0.2; b11<-0.1
e<-c()
2<-¢()
e[1:2]<- rt(2,27)
x <-¢()
x[1:2]<-c(0, e[1])
set.seed(007188)
for (i in 3:1500) {
e[i] = rt(1,27) # generate noise value
X[i] =b11* x[i-1]*e[i-1]+b12*x[i-1]*e[i-2]+ e[i] = # calculate x using the
model
}
t<- x[-1:-1000]
y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-min(y))
n<-round(z,7)

y
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# The R program (BL0021_GARCH_Errors)
b2<-0.6; b1=0.7 ; b3=0.2;c4<-0.5;c5<-0.6;c3<-0.3;5<-0.9
h<-c()
e<-c()
2<-¢()
e[1:2]<- rnorm(2)
z[1:2]<-rnorm(2)
h[1]<-c(sqrt(s))
h[2]<-c(sqrt(1+b3*e[1]"2+c3*h[1]))
x <-c()
X[1:2]<-c(0, e[1])
set.seed(6032609)
for (i in 3:1500) {
e[i] = rnorm(1) # generate noise value
z[i]=rnorm(1)#generates noise value
h[i]= (sqrt(s+b3*e[i-1]*2+c3*h[i-1]))# conditional variance is strictly positive
X[i] = b2*x[i-2]*¢[i-1]+ z[i]*h[i] # calculate x using the model
}
t<- x[-1:-1000]
y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-min(y))
v<-round(z,7)

Y
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# The R program (BL(0,0,1,1) _Normal)
b1<-0.2
e<-c()
e[1]<- rnorm(1)
x <-c()
x[1]<-c(e[1])
set.seed(0006412)
for (i in 2:1500) {
e[i] = rnorm(1) # generate noise value
X[i] = b2*x[i-1]*e[i-1]+ e[i] # calculate x using the
model
¥
t<- x[-1:-1000]
y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-
min(y))
n<-round(z,7)

summary(y)
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# The R program (BLO011_GARCH(1,1)
bl <- 0.9; b2<-0.64; s<-0.03; b3<-0.135;b4<- -0.17
h<-c()
x <-¢()
e<-c()
z<-c()
e[1]<- rnorm(1)
z[1]<-rnorm(1)
h[1]<-c(sqrt(s))
x[1]<-c(z[1]*h[1])
set.seed(90033134)
for (i in 2:1500) {
e[i] = rnorm(1) # generate noise value
z[i]J=rnorm(1)#generates noise value
h[i]= abs(sqrt(s+b2*e[i-1]*2+b3*h[i-1]))# conditional variance is strictly positive
x[i] =b4* x[i-1]+b1*x[i-11*e[i-1]+ z[i]*h[i] # calculate x using the model
}
t<- x[-1:-1000]
y<-round(t,7)

# The R program (BL1012_studentErrors)
b12<-0.4; b1=0.2

sigma<-1

h<-c()

e<-c()

z2<-¢()

e[1:2]<- rt(2,7)

x <-c()

X[1:2]<-c(0, e[1])
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set.seed(02848151)
for (i in 3:1500) {
e[i] = rt(1,7) # generate noise value
X[i] = b1*x[i-1]+b12*x[i-1]*e[i-2]+ e[i]] # calculate x using the
model

}

t<- x[-1:-1000]

y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-min(y))

n<-round(z,7)

Y

# The R program (BL1011_Normal)
b1<-0.1; b2<--0.2
e<-c()
e[1]<- rnorm(1)
x <-¢()
x[1]<-c(0)
set.seed(01009821)
for (i in 2:1500) {
eli] = rnorm(1) # generate noise value
x[i] = b1*x[i-1]+b2*x[i-1]*e[i-1]+ e[i] # calculate x using the model
}
t<- x[-1:-1000]
y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-min(y))
n<-round(z,7)

Y
n
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# The R program (BL(1,0,1,1) GARCH(1,1)
bl <- 0.9; b2<-0.64; s<-0.03; b3<-0.135;b4<- -0.17
h<-c()
x <-¢()
e<-c()
2<-¢()
e[1]<- rnorm(1)
z[1]<-rnorm(1)

h[1]<-c(sqrt(s))

x[1]<-
c(z[1]*h[1])
set.seed(580173)
for (i in
2:1500) {

e[i] = rnorm(1) # generate noise value
z[i]=rnorm(1)#generates noise value
h[i]= abs(sqrt(s+b2*e[i-1]*2+b3*h[i-1]))# conditional variance is strictly positive

x[i] =b4* x[i-1]+b1*x[i-1]*e[i-1]+ z[i]*h[i] # calculate x using the model

t<- X[-1:-
1000]
y<-round(t,7)

summary(y)
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# The R program (BL0021_Normal_Errors)
b21<-0.4; b1=0.2
h<-c()
e<-c()
2<-¢()
e[1:2]<- rnorm(2)
z[1:2]<-rnorm(2)
x <-c()
X[1:2]<-c(e[1].e[1])
set.seed(239)
for (i in 3:1500) {
e[i] = rnorm(1) # generate noise value
X[i] =b21*x[i-2]*¢e[i-1]+ e[i]  # calculate x using the
model
}
t<- x[-1:-1000]
y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-min(y))
n<-round(z,7)
Y
# The R program (BL(1,0,1,1)_Normal)
bl<-0.1; b2<--0.2

e<-c()
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e[1]<- rnorm(1)
x <-c()
X[1]<-c(e[1])
set.seed(01009821)
for (i in 2:1500) {
e[i] = rnorm(1) # generate noise value

X[i] = b1*x[i-1]+b2*x[i-1]*e[i-1]+ e[i] # calculate x using the

model
}
t<- x[-1:-1000]
y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-
min(y))
n<-round(z,7)
summary(y)
# The R program (BLO011_student)
b11<-0.4
e<-c()
z<-¢()
e[1:2]<- rt(2,7)
x <-c()

x[L:2]<-c( e[1], X[1]*e[1]+¢[2])
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set.seed(01018848)
for (i in 3:1500) {
ef[i] = rt(1,7) # generate
noise value
x[i] =bl1*x[i-1]*e[i-1]+ e[i] #
calculate x using the odel
¥
t<- x[-1:-1000]
y<-round(t,7)
2<-0.1+0.8*(y-min(y))/(max(y)-min(y))

n<-round(z,7)

y

# The R program General_BL(1,01,2) student)

b12<-0.3; b1=0.2; b11<-0.1

e<-c()

2<-¢()

e[1:2]<- rt(2,27)

X <-¢()

X[1:2]<-c(0, e[1])

set.seed(007188)
for (i in 3:1500) {

e[i] = rt(1,27) # generate noise value
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x[i] =b11* x[i-1]*e[i-1]+b12*[i-1]*e[i-2]+ e[i]
model

}

t<- x[-1:-1000]

y<-round(t,7)

2<-0.1+0.8*(y-min(y))/(max(y)-min(y))

n<-round(z,7)

Y

# The R program (BL(0,0,2,1) GARCH_Errors)
b2<-0.6; b1=0.7 ; b3=0.2;c4<-0.5;c5<-0.6;c3<-0.3;5<-0.9
h<-c()
e<-c()
z<-¢()
e[1:2]<- rnorm(2)
z[1:2]<-rnorm(2)
h[1]<-c(sqrt(s))
h[2]<-c(sgrt(1+b3*e[1]"2+c3*h[1]))
X <-()
X[1:2]<-c(0, e[1])
set.seed(6032609)

for (i in 3:1500) {
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e[i] = rnorm(1) # generate noise value

z[i]=rnorm(1)#generates noise value

h[i]= (sqrt(s+b3*e[i-1]"2+c3*h[i-1]))# conditional variance is strictly positive
X[i] = b2*x[i-2]*e[i-1]+ z[i]*h[i] # calculate x using the model

}

t<- x[-1:-1000]

y<-round(t,7)

2<-0.1+0.8*(y-min(y))/(max(y)-min(y))

v<-round(z,7)

Y
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Appendix I1: Moments of distributions used
Moments of the standard normal distribution

E(e,)=0
E(e?) = o?
EE’)=0
E(e') =30"

Moments of the GARCHDistribution

Let w be the o — field generated by e, _,,e _,,.....e.. The conditional exp ectations or moments
higher powers of e, are given by

Ee/v.y) =E@m+/h =JhE(@m /v ,)=0,
E(e’/w) =hE@®m’lw. ) =h;
E(&’/vy) =hE®m 1w, ) =0,

Ee' /v, ) =h’E(m ly,,) =3

Moments of the student distribution.

The exp ectations or moments higher powers of e,
are given by
E(e,)=0
n

E(e,’) = ;

() =——
E(e’) = 0;

2F 5 r(n—4)

E(et4): i (ﬁ) 1)2
reIrE
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Appendix I11: Optimal Linear Estimation Method

According to Nassiuma (1994), suppose we have one value X, missing out of a set of an
arbitrarily large number of n possible observations generated from a time series

process{x.}. Let the subspace S, be the allowable space of estimators of X, based on the
observed values {X X_y,X_ ... %} i.., S :sp{xt 1<n,t# m} where n, the sample size, is
assumed large. The projection of X, ontoS, (denoted PSX;F”) such that the dispersion error of
the estimate (written disp (X, — Psgm) is a minimum would simply be a minimum dispersion

linear interpolator. Direct computation of the projection X, onto S is complicated since the
subspaces S, =sp {xm_l,xm_z,...}and S,, are not independent of each other. We thus consider
evaluating the projection onto two disjoint subspaces of S . To achieve this, we express S/,
as a direct sum of the subspaces S, and another subspace, sayx,, such thatS; =S, @S,. A
possible subspace is S, = sp{x, — % :i >m+1}, where X is based on the values {X, ;, %, ,....|-

The existence of the subspaces S, and S, is shown in the following lemma (Nassiuma, 1994)

Lemma

Suppose {X} is a nondeterministic stationary process defined on the probability
space (2, B,P) . Then the subspaces S, and S, defined in the norm of the L are such that

S =S,®8,.

Proof:
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Suppose x, € S, then x, can be represented as

X, =2+ Zn:aixi =(Z+ Zn:aiki)+ Zn:ai(xi -X)

i=m+1 i=m+1 i=m+1

where Z € S,. Clearly the two components on the right hand side of the equality are disjoint

and independent and hence the result. The optimal linear estimator of X, can be evaluated as

the projection onto the subspaces S, and S, such that disp (x,, — PSXF) IS minimized. i.e.,

*_pPXm — p*m Xn — ¢ X
Xp =P = Pm +Bm =X, + P

m Sm St

k=m+1

n
But P/" = {Zak(xk -X : disp(x, —Psfm} where the coefficients’ are estimated such

that the dispersion error is minimized. The resulting error of the estimate is evaluated as

n
X = X = (X = Rpy) — Zak(xk - %)

k=m+1

Now squaring both sides and taking expectations, we obtain the dispersion error as

diSpXm = E(Xm - X;])z = E{(Xm - )’Zm)_ iak (Xk - )’Zk)} (1)

k=m+1

By minimizing the dispersion with respect to the coefficients (differentiating with respect to

a, and solving fora, ) we should obtain the coefficientsa,, for k>m+1, which are used

in estimating the missing value (Nassiuma,1994). The missing value x,, is estimated as
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n
)A(m + Zak(xk _)A(k)

k=m+1

Xn
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Appendix IV: Research Methodology

3.1 Methodology
The methodology used in this study s described below. It includes the derivation approaches,

data generation method, choice of performance criteria.

3.2 Optimal linear interpolation method

In this study, the estimators of the missing values for bilinear time series models were
derived using optimal linear interpolation method by minimizing the dispersion error. The
estimates were derived for pure bilinear time series and general bilinear time series having

different probability distributions.

3.2.1 Data generalization
Data was obtained through simulation using computer codes written in R software. These

codes are presented in the appendix.

3.2.2 Missing data positions and softwares

Three data points 48, 293 and 496 selected at random and data at these positions removed to
create a ‘missing value(s)’ at these points to be estimated. Data analysis was done using
statistical and computer software which included Microsoft Excel, Time Series Modeling
TSM and R and Matlab . R was used to generate the data, matlab was used in determining
estimates based on artificial neural networks while Microsoft Excel was used in analysis of
data to calculate the MAD and MSE as well as in obtaining estimates based on exponential

smoothing.
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3.2.3 Choosing a quality fit criterion

An important methodological issue that required careful attention is the selection of a
measure of “goodness of fit” between the models and the data (time series), and of a criteria
to judge when this measure is “good enough” for the stated purpose. The mean square error

(MSE) and mean absolute deviation (MAD) were used as performance measures.

3.3 Methodology for ANN

Recent studies indicate that consideration of statistical principles in the ANN model building
process may improve model performance ( Cheng and Titterington, 1994; Ripley, 1994;
Sarle, 1994). Consequently, a systematic approach in the development of ANN models was
adopted. The steps that were followed included: data pre-processing, the determination of
adequate model inputs and suitable network architecture, parameter estimation (optimization)
and model validation (Maier and Dandy, 1999b). In addition, careful selection of a number of

internal model parameters required was undertaken.

3.3.1 Structure of the artificial neural network

For this analysis a basic multilayer perceptron (MLP) with a single hidden layer will be used,
which is the most commonly employed form of ANN (see Zhang, 1998).To date, there is no
simple clear-cut method for determination of input parameters and the procedure adopted
was to test numerous networks with varying numbers of input and hidden units p and q,

respectively.
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3.3.2 Data pre-processing
The available data was divided into their respective subsets (e.g. training, testing and

validation) before any data pre-processing is carried out (Burden et al., 1997).

This was in the ratio of 70% training, 15% validation and 15% testing. In order to ensure that
all variables receive equal attention during the training process, data was standardized. The

standardization was in the range 0.1-0.9. This achieved using the formula

z,=0.1+ olgw

Xrax ~ Xmin

where z, - standardized form, X, -original data, X, - maximum value in the sample, X ;, -
minimum value in the sample. For computation of performance measures, the estimates

obtained from the artificial neural work were converted back to the original form usingthe

formula

X, =1.25(z, —0.1)(X, o — Xi5n) — X

min

3.3.3 Training

The data presented to the neural networks, z,, was scaled between [0.1, 0.9]. The numbers
of hidden units were re-specified for every time series. Gradient descent back-propagation
was used for the training. The learning rate was set to 0.5 with a cooling factor per epoch of
0.01. Momentum was set to 0.4 and the networks are trained for 1000 epochs or until an early
stopping criterion was satisfied. For the early stopping criterion the mean squared error was

evaluated in every epoch. Once a network structure (p,q) was specified, the network was
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ready for training, a process of parameter estimation such that mean squared error of the test

data is minimized.

The momentum term may also be helpful to prevent the learning process from being trapped

into poor local minima, and is usually chosen in the interval [0, 1].

Finally, the estimated model was evaluated using a separate hold-out sample that is not

exposed to the training process.

In order to obtain the optimum network architecture, based on the concepts of artificial
neural networks design and using pruning algorithms in MATLAB 7 package software,
different network architectures were evaluated and used to compare the ANNs performance.

The best-fitted network was selected, and used to estimate the missing values.

The test and train procedure involves training the network on most of the input data (around
70%) and testing on the remaining data. The network performance on the test set is a good
indicator of its ability to generalize and handle data it has not been trained on. If the
performance on the test was poor, the network configuration or learning parameters was

changed. The network was then retrained until its performance was satisfactory.

3.3.4 Data and performance measures
The data series were simulated from different elementary and simple bilinear models which
have normal, student and GARCH distributions using R-statistical software. A program

codes in R were developed to assist in the simulation.
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The seed in the R program code was changed to obtain a new sample. For each program
code, a set of 100 samples will be generated and analyzed. Each sample was of size 500 and
missing artificial points were created at data point 48, 293 and 496 (these points were

selected at random).The models selected included

Normal Student GARCH

BL_(0,0,1,1) BL_(0,0,1,1) BL_(0,0,1,1)
BL_(1,0,1,1) Bl _(1,0,1,2) BL_(1,0,1,1)
BL_(1,0,2,1) BL_(0,0,2,1) BL_(0,0,2,1)

3.4 Performance measures
The MAD (Mean Absolute Deviation) and MSE (Mean Squared Error) were used. These

were obtained from equation (3) and equation (4) respectively.

3.5 Methodology for exponential smoothing

A simple exponential smoothing was used to estimate the missing values. For each sample
data, the constant alpha was selected from a range of values between 0.1 and 0.9 in steps of
0.1. Based on the data values before the missing point, recursive estimates were obtained.
The alpha that gave the least MAD was selected and used in forecasting the missing value.

This was done with the aid of excel software.

3.5 Estimation of missing values using optimal estimation functions.

Let X,X,,..,X, be an observed time series with X, (1<m<n) missing. Then when

considering X, as a parameter we can obtain its optimal estimate as in (Thavaneswaran and
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Abraham, 1988). It can be shown that the optimal estimate of X is obtained by solving for

n
X, in the equationZaf{lhI =0, where h, is a sequence of innovations of the form, such
t=1

that,
E(h/Fz:)=0
and

0
E| —h/F
A
T EMIRY)

3.61 Exponential smoothing
There are two types of exponential smoothing that can be used namely: Simple Exponential
Smoothing (Exponentially weighted moving average) and Brown's Linear (i.e., double)

Exponential Smoothing

3.6.11 Simple exponential smoothing (exponentially weighted moving average)

Let a denote a "smoothing constant" (a number between 0 and 1). One way to write the
model is to define a series L that represents the current level (i.e., local mean value) of the
series as estimated from data up to the present. The value of L at time t is computed

recursively from its own previous value like this:

Lt = aYt + (1-a) Lt
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Thus, the current smoothed value is an interpolation between the previous smoothed value
and the current observation, where o controls the closeness of the interpolated value to the
most recent observation. The forecast for the next period is simply the current smoothed

value:

YAt+1 = Lt

Equivalently, we can express the next forecast directly in terms of previous forecasts and
previous observations, in any of the following equivalent versions. In the first version, the

forecast is an interpolation between previous forecast and previous observation.

YAt+1 = ozYAt +(1- oc)YAt

In the second version, the next forecast is obtained by adjusting the previous forecast in the

direction of the previous error by a fractional amount a:

~ A

Yt+1 =Yt + o,

Where,

-
—-

is the error made at time t. In the third version, the forecast is an exponentially weighted (i.e.

discounted) moving average with discount factor 1-a:

Yo,=aY,+(1-a)Y_ +(1-a)’Y_, +(1-—a)®Y _; +...]
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The interpolation version of the forecasting formula is the simplest to use if you are
implementing the model on a spreadsheet: it fits in a single cell and contains cell references
pointing to the previous forecast, the previous observation, and the cell where the value of o

is stored.

Another important advantage of the SES model over the SMA model is that the SES model
uses a smoothing parameter which is continuously variable, so it can easily optimized by

using a "solver" algorithm to minimize the mean squared error.

3.7 Brown's Linear exponential smoothing

The SMA models and SES models assume that there is no trend of any kind in the data
(which is usually good or at least not-too-bad for 1-step-ahead forecasts when the data is
relatively noisy), and they can be modified to incorporate a constant linear trend as shown
above. What about short-term trends? If a series displays a varying rate of growth or a
cyclical pattern that stands out clearly against the noise and if there is a need to forecast more
than 1 period ahead, then estimation of a local trend might also be an issue. The simple
exponential smoothing model can be generalized to obtain a linear exponential smoothing
(LES) model that computes local estimates of both level and trend. The simplest time-
varying trend model is Brown's linear exponential smoothing model, which uses two
different smoothed series that are centered at different points in time. The forecasting

formula is based on an extrapolation of a line through the two centers.

3.8 Exponential smoothing
Exponential Smoothing methods are the most common methods of forecasting. Their

popularity can be attributed to several practical considerations. First, they are very simple in
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concept and easy to understand. Second, they require little computational effort and small
data storage space. Third, they can achieve flexible adaptivity by varying smoothing

parameters to account for changes in the behaviors of the time series being forecasted.
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innovations were derived by minimizing the h-steps-ahead dispersion error. For comparison purposes, missing value
estimates based on artificial neural network (ANN) and exponential smoothing (EXP) techniques were also obtained.
Simulated data was used in the study. 100 samples of size 500 each were generated for different pure bilinear time
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optimal linear estimates were equivalent to one step-ahead forecast of the missing value. The study recommends
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1. Introduction

A time series is data recorded sequentially over a
specified time period. There are cases where some
observations that were supposed to be collected are not
obtained and this result in missing values. Being unable to
account for missing observation may result in a severe
mis-representation of the phenomenon under study.
Further, it can cause havoc in the estimation and forecasting
of linear and nonlinear time series as in [3]. This problem
can be solved through missing value imputation.

Imputation of missing values has been done for several
linear time series models. For non-linear time series
models, imputation has been done for ARMA models with
stable errors as in [24]. For other nonlinear models, such
as bilinear time series models, there is no evidence to
show that imputation of missing values has been explicitly
done. Therefore this study derived estimates of missing
values for the bilinear time series models with normally
distributed innovations. The missing values were derived
using optimal linear interpolation techniques based on
minimizing the h-steps-ahead dispersion error. Other
techniques for estimating missing values that were used
included the non-parametric methods of artificial neural
network as in [4] and [31] as well as exponential smoothing.

Interest in this study was also on the quality of the
imputed values at the level of the individual, an issue that
has received relatively little attention as in [5]. The basic
idea of an imputation approach, in general, is to substitute

a plausible value for a missing observation and to carry
out the desired analysis on the completed data as in [22].
Here, imputation can be considered to be an estimation or
interpolation technique.

The imputation of the missing value technique
developed may be adopted by data analysts to improve on
time series modeling.

2. Literature Review

Most of the real-life time series encountered in practice
are neither Gaussian nor linear in nature and are
adequately described by nonlinear models. One of the
most important nonlinear models used in practice is the
bilinear time series models. The nonlinearity of bilinear
models can be approached in two ways. The first approach
is to create a model that consist of a blend of non-
Gaussian and nonlinearity which has been widely
discussed as in [31] where he considers the existence of
bilinear models with infinite variance innovations. The
other approach is to introduce nonlinearity in the model
but assume that the distribution of the innovation
sequence is Gaussian as in [36]. Properties of these
models have been extensively studied in the literature.

2.1. Bilinear Models

A discrete time series process X, is said to be a

bilinear time series model of order BL (p.q , P, Q) if it
satisfies the difference equation
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Abstract In this study optimal linear estimates of missing values for pure bilinear time series models whose innovations
have a student-t distribution are derived by minimizing the h-steps-ahead dispersion error. Data used in the study was
simulated using the R-software where 100 samples of size 500 were generated for simple bilinear models. In each sample,
three data positions 48, 293 and 496 were selected at random and artificial missing values created at these points. For
comparison purposes, artificial neural network (ANN) and exponential smoothing (EXP) estimates were also computed. The
performance criteria used to ascertain the efficiency of these estimates were the mean absolute deviation (MAD) and mean
squared error (MSE). The study found that optimal linear estimates were the most efficient for estimating missing values of
the pure bilinear time series followed by exponential smoothing estimates. Further, these estimates were equivalent to
one-step-ahead forecast. The study recommends the use of optimal linear estimate for estimating missing values in pure
bilinear time series data whose innovations have student-t distribution.
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known to be highly skewed. There is no evidence to show
that optimal linear interpolation approach has been used to
estimate missing values for bilinear time series and
specifically, pure bilinear time series.

1. Introduction

Data analysts are frequently faced with situations where
one or several time series observations are missing at certain
points within the data set collected for modeling. This
creates missing values at such points. Being unable to
account for missing values may result in a severe
misrepresentation of the phenomenon under study or can
cause havoc in the estimation and forecasting of linear and
nonlinear time series as in [1]. The missing values can be
reconstructed using imputation techniques. The basic idea of
an imputation approach, in general, is to substitute a
plausible value for a missing observation and to carry out the
desired analysis on the completed data as in [2]. There are
several methods that can be used for imputing missing values
in numerical data. These methods include mean substitution,

1.1. Bilinear Models

A discrete time series process X, is said to be a bilinear
time series model of order BL (p, g, P, Q) if it satisfies the
difference equation

P P Q
=D 0N ieje,_j +ZZmb,_,e,‘] +e, (1)
i=1 J=1 =1 j=1
where @, (i=1.2,..p), 19, (G=1,2,..q), b,j (=1,2,..P; j=1,2,..,Q)

are constants; the innovation sequence {e,} are i.i.d

linear regression, neural networks and nearest neighbor
approach and optimal linear interpolation.

In this study we were interested in estimating missing
values for a class of bilinear nonlinear time series models
called the pure bilinear time series models whose
innovations have a student-t distribution using linear
interpolation approach. The student-t distribution can be
used to model the innovation of financial data which is
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random process which has a student-t distribution and &,

=1. For pure bilinear time series, only the bilinear coefficient
is not equal to zero. Thus the pure bilinear time series model.
BL(0,0,P,Q) is given by

Xp= ﬁ i bijxl-iel—j +e, (2)
i=1 j=1
where b, 1<i<P and 1< j<Q, are the coefficients

of the model, and { ¢, } are i.i.d student-t process with zero

mean and common finite variance. Some important
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Abstract A major problem facing data analyst is the di and deter of the most efficient imputation
technique for imputing missing observations in data used for modeling. Several imputation techniques exist. However, most
of them do not take into consideration the probability distribution of the innovation sequence of the time series model.
Therefore this study derived optimal linear estimates of missing values for bilinear time series models with GARCH
innovations based on minimizing the h-steps-ahead dispersion error. The efficiency of the derived was d
with those obtained using nonparametric techniques of artificial neural network (ANN) and exponential smoothing (EXP)
using simulated data. A hundred different samples of size 500 each were generated for two different pure bilinear models
with GARCH innovations namely: BL(0,0,1,1) and BL(0,0,2,1). In each sample, artificial missing observations were created
at data positions 48, 293 and 496 and estimated using these methods. The performance criteria used to measure the efficiency
of these estimates were the mean absolute deviation (MAD) and mean squared error (MSE). The study found mixed results;
for the BL(0,0,1,1) model, the optimal linear estimates were the most efficient while for the BL(0,0,2,1), ANN were the most
efficient. The study recommends that both ANN and optimal linear estimates be used in estimating missing values for bilinear
time series data with GARCH innovations.
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time series models whose innovations have GARCH errors.
For bilinear time series models, estimation of missing values
is still at its infancy stage. This is especially so for bilinear
time series models whose innovations are non-Gaussian.

A discrete time series process X, is said to be a bilinear

time series model, denoted byBL (p, g, P, Q), if it satisfies

1. Introduction

A time series is data recorded sequentially over a specified
time period. Data analysts are frequently faced with cases of
missing observation at certain points within the data set

i eeted far Sl Missing valuesimay cceuriye the difference equation
various reasons which may include poor record keeping, lost
records ete. In addition some data, suspected to be outliers,
may be deleted because they were erroneously collected. A X = f: @ix i+ i 6; jéi—j +Z Z b i Xi—i€-; t €
major problem with missing data is that it can cause havoc in i=1 i=1 j=1
the estimation and forecasting of linear and nonlinear time
series as in [2]. Therefore, if data has missing values, it is
necessary that the missing value be |mpuled ﬁrsl before the
data is analyzed. Missing value imp iques have
been developed for several linear and nonlinear time series
models. Most of these methods do not consider the
distribution of the innovation sequence of the time series

and6,$ and bij are constant @, =1 and e, is the innovation

sequence which is normally distributed.
For pure bilinear time series model, we have

X = f ib,-j-x,_,- +e,.

data, especially the non-Gaussian distribution. Further, most
of these methods only deal with linear ARMA models. In
this study, we are interested in a class of nonlinear bilinear
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i=1 j=1

It was proposed by Granger and Andersen (1978a) and has
been widely applied in many areas such as control theory,
economics and finance. For bilinear time series model with
GARCH (p. q) innovations, the innovation ¢, is expressed as

el='7!\/_h;’
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Abstract. This sludy dcnved estimates of missing valucs for bilinear time series mudcls BL (p. 0, p. p) with normally

by imizing the h-step: ion error. For p P . missing value estimates
based on artificial neural network (ANN) and ial g (EXP) techni were also obtained. Simulated data was
used in the study. 100 samples of size 500 each were gencralcd for bilinear time serics models BL (1, 0, 1, 1) using the R-
statistical software. In each sample, artificial missing observations were created at data positions 48, 293 and 496 and
estimated using these methods. The performance criteria used to in the effici of these were the mean
absolute deviation (MAD) and mean squared error (MSE). The study found that optimal linear esumal:s were lhe most

efficient estimates for estimating missing values for BL (p, 0, p, p). The study ds OLE for
missing values for bilinear time series data with normally distributed innovations.
Keywords: Optimal Linear [ lati i ion, MSE, I ., ANN, E ial S hil
= exponential smoothing.
1. Introduction Interest in this study was also on the quality of the imputed
'A'time Sexics in data 4ia ially over a ified  Values at the level of the individual, an issue that has received

time period. There are cases where some observations that
were supposed to be collected are not obtained and this result
in missing values. Being unable to account for missing
observation may result in a severe misrepresentation of the
phenomenon under study. Further, it can cause havoc in the

imation and fc ing of linear and nonli time series
as in [3]. This problem can be overcome through missing
value imputation.

Imputation of missing values has been done for several
linear time series models. For non-lincar time series models,
imputation has been done for ARMA models with stable
errors as in [24]. For other nonlinear models, such as bilinear
time series models, there is no evidence to show that
imputation of missing values has been explicitly done.
Therefore this study derived estimates of missing values for
the bilinear time series models with normally distributed
innovations. Th|. missing values were derived using optimal
linear i i based on minimizi lhc h-
steps-ahead di: error. Other techni for
missing values that were used included the non-parametric
methods of artificial neural network as in [4], [31] and

relatively little attention as in [5]. The basic idea of an
imputation approach, in general, is to substitute a plausible
value for a missing observation and to carry out the desired
analysis on the completed data as in [22]. Here, imputation
can be considered to be an estimation or interpolation
technique.

The imputation of the missing value technique developed
may be adopted by data analysts to improve on time series
modeling.

2. Literature Review

Most of the real-life time series encountered in practice
are neither Gaussian nor lincar in nature and are adequately
described by nonlinear models. One of the most important
nonlinear models used in practice is the bilinear time series
models. The nonlinearity of bilinear models can be
approached in two ways. The first approach is to create a
model that consist of a blend of non-Gaussian and
nonlinearity which has been widely discussed as in [31]
where he considers the existence of bilinear models with
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innovations have a student-t distribution are derived by minimizing the h-steps-ahead dispersion error. Data used in the study
was simulated using the R Statistical Software where 100 samples of size 500 each were generated for the bilinear model
BL (1,0, 1, 1). The time series data generated was numbered from 1 to 500. In each sample, three data positions 48, 293 and
496 were selected at random and the value at these points removed to create artificial missing values. For comparison
purposes, two commonly used non-parametric techniques of artificial neural network (ANN) and exponential smoothing
(EXP) estimates were also computed. The performance criteria used to ascertain the efficiency of these estimates were the
mean squared error (MSE) and Mean Absolute Deviation (MAD). The study found that ANN estimates were the most
efficient for estimating missing values of the bilinear time series with student-t innovations. The study recommends the use of

ANN for estimating missing values in bilinear time series model with student errors.
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1. Introduction

Data analysts are frequently faced with the missing value
problem. Missing values may occur for various reasons
which may include poor record keeping, lost records,
technical error, collecting data at irregular times, etc., ([1],
[2]). In addition, a peculiar case can arise when one may be
interested in determining the likely- value of a variable of
interest at a time that may not coincide with a particular
measurement or observation [3]. These can result in one or
several observations missing.

These missing values must be accounted for since missing
values have negative effects on the modeling of the data [4].
There are many ways of handling missing values. The
common approach is to use imputation techniques. This
involves using a substitute value to replace the missing
observation as in [5]. According to [6]. imputation broadly
comprises several techniques that have been developed to
compute missing values. These techniques may employ
strategies such as mean substitution and artificial neural
networks approach. It may also involve the use of
appropriate statistical prediction or forecasting models such
as regression. time series models. and Markov chain and
Monte Carlo methods.

Estimation of missing values for bilinear time series has
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been done for a particular order of the bilinear time series
BL (1, 0, 2, 0) by [4]. They used estimating functions
criterion to derive the estimates of missing values. Other
studies have also been done to estimate missing values for
pure bilinear time series when the innovation sequence has
the GARCH distribution [7]. Still the same authors have
estimated missing values for pure bilinear time series when
the innovation sequence has the normal distribution [8]. [9]
also estimated missing values for bilinear time series for the
pure bilinear case when the innovation sequence has the
student-t distribution. They found that the estimates of the
missing values were equivalent to a one—step-ahead forecast.
Further. [10] used the linear interpolation criterion to
estimate missing values for the BL (p. 0. p. p) when the error
term follows the normal distribution.

The distribution of interest in this study is the student-t
distribution. This distribution is characterized by long tails
and is suitable for modeling financial data which is known to
be highly skewed. There is no evidence to show that optimal
linear interpolation approach based on the dispersion
error has been used to estimate missing values for bilinear
BL (p. 0. p. p) with student-t distribution.

1.1. Identification of Bilinear Time Series Models

Given a time series data. the first step in the identification
process of bilinear time series model is to test whether the
data can be modeled either as a linear time series or belongs
to the broader class of nonlinear time series models. This
involves testing a null hypothesis that the data is linear. This
can be done using one of the statistical tests of linearity ([11]:
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