
A MODEL FOR DETECTING INFORMATION TECHNOLOGY

INFRASTRUCTURE POLICY VIOLATIONS IN A CLOUD ENVIRONMENT

RUTH ANYANGO OGINGA

A Thesis Report Presented to the Institute of Postgraduate Studies of Kabarak

University in Partial Fulfilment of the Requirement for the Award of Doctor of

Philosophy in Computer Science

KABARAK UNIVERSITY

NOVEMBER 2019

ii

DECLARATION

I, the undersigned, declare that this thesis is my original work and it has not been presented in

any other university or institution for academic credit.

NAME: Ruth Anyango Oginga REG: DGI/M/1272/09/15

Signature …………………………………… Date ……………………………………..

iii

RECOMMENDATION

To the Institute of Postgraduate studies:

This thesis entitled ―A model for Detecting Information Technology Infrastructure Policy

Violations in a Cloud‖ and written by Ruth Anyango Oginga is presented to the Institute of

Postgraduate Studies of Kabarak University. We have reviewed the thesis and recommend it

be accepted in partial fulfillment of the requirement for the award of Doctor of Philosophy in

Computer Science.

Prof. Felix Musau

Department of Computer Science

Riara University

Signed ………………………………………… Date ………………………………

Dr. Christopher Maghanga

Department of Computer Science and IT

Kabarak University

Signed ………………………………………… Date ………………………………

iv

COPYRIGHT

@2019

Ruth Anyango Oginga

All rights reserved. No part of this thesis may be reproduced or transmitted in any form or by

any means of mechanical, including photocopying, recording or any other information

storage or retrieval system without permission in writing from the author or Kabarak

University.

v

ACKNOWLEDGMENTS

My heartfelt sincere gratitude is to the Almighty God for His grace and providing me with

good health, sound mind and the knowledge to complete this thesis. I do not take it for

granted. I also thank Kabarak University for giving me an opportunity to pursue my dream by

availing its resources. I greatly wish to acknowledge the support of my supervisors Prof.

Musau Felix and Dr. Christopher Maghanga for their wisdom and support without which I

could not have come this far with my thesis. I particularly thank my loving husband Wyclife

for his moral and financial support, and to our children Neziah and Ashriel for their love. To

all my colleagues who contributed in one way or another in quenching my desire for

knowledge, especially Mr. Ragama, Dr. Masese, Dr. Rugiri, and Dr. Karie, I am grateful.

Finally, I acknowledge my extended family members for their unfailing love, encouragement

and moral support throughout my period of study and for understanding and appreciating the

demands of this course in terms of time and resources.

vi

DEDICATION

 This thesis is earnestly dedicated to my lovely family for their support.

vii

ABSTRACT

The pervasiveness of the internet and available connectivity solutions brought about by cloud

computing has led to an unprecedented increase in technologies built based on information

technology infrastructures. This has improved the number of cloud users and substantially

increasing the number of incidents related to the security of infrastructure and data in the

recent past. Most organizations consider the deployment of different types of protection

systems to curb various malicious activities. Organizations offer sophisticated monitoring and

reporting capabilities to identify attacks against the cloud environment. Users with ill

intentions have increasingly used the cloud as an attack vector due to its ubiquity, scalability

and open nature despite the existence of policy violation detection systems necessitating the

need to strengthen access policies from time to time. Policy violation detection plays a major

role in information security by providing a systematic way of detection and interpreting

attacks. Some of the known weaknesses of most detection tools are the generation of false

positives or false alerts and the inability to perform analysis if traffic is encrypted as well as

failure to detect and prevent attacks. This research was therefore concerned with the

investigation of weaknesses of firewall and Intrusion Detection Systems (IDS) which are

supported by the cloud. The information was then used to build and experiment on an

improved model of a policy violation detection system. Experiments revealed the weakness

in existing systems specifically IDS and firewalls. Unlike the existing systems, a new model

designed to overcome the shortfall was able to detect both recognized and unrecognized

attacks and signatures. Moreover, the model is capable of preventing the occurrence of false

positives and terminates suspicious nodes in real time without human intervention. An

additional area of application such as movement from data from one cloud to another is not

achievable, because of the mixed environment of the cloud. This is a potential area for

investigation in the future.

Keywords: Policy violation, Develop, Cloud, Detection, Weaknesses, Attacks

viii

TABLE OF CONTENT

DECLARATION.. ii

RECOMMENDATION ... iii

COPYRIGHT .. iv

ACKNOWLEDGMENTS ... v

DEDICATION... vi

ABSTRACT .. vii

TABLE OF CONTENT ... viii

LIST OF FIGURES ... xiii

LIST OF TABLES .. xvi

LIST OF ABBREVIATION AND ACRONYMS ... xvii

OPERATIONAL DEFINITION OF TERMS .. xix

CHAPTER ONE .. 1

INTRODUCTION.. 1

1.1 Introduction .. 1

1.2 Background of the Study .. 1

1.2.1 Detection systems .. 3

1.3 Statement of the Problem .. 5

1.4 Purpose of the Study .. 6

1.4.1 Objectives of the Study.. 6

1.4.2 Research questions .. 6

1.5 Justification of the study .. 7

1.6 Scope of the Study.. 8

1.7 Limitations of the Study ... 8

1.8 Assumptions of the Study .. 8

CHAPTER TWO ... 10

LITERATURE REVIEW ... 10

2.1 Introduction .. 10

2.2 Overview of Cloud Environment ... 10

2.2.1 Characteristics of the Cloud Computing ... 12

2.2.2 Cloud Computing Service Models .. 13

2.2.3 Cloud Delivery Models ... 14

2.2.3.4 Community Cloud .. 16

2.2.4 Detection tools.. 16

ix

2.2.4.1 Intrusion Detection System .. 18

2.2.5 Intrusion Prevention System ... 24

2.2.6 Firewall.. 27

2.2.7 Types of Firewall .. 28

2.2.8 Flow Chart of a Firewall .. 29

2.3 Weaknesses of Existing Detection Tools ... 30

2.3.1 Weaknesses of Intrusion Detection System ... 31

2.3.2 Weaknesses of the Intrusion Prevention System ... 32

2.3.3 Weaknesses of Firewall ... 32

2.4 Demonstrate the weaknesses of existing detection tools on policy violation in the cloud

 .. 34

2.5 Develop a model to detect and identify policy violation in the real-time traffic 40

2.6 Cloud computing crimes .. 44

2.6.1 Virtual Machine Attacks .. 45

2.6.2 U2R (User to Root Attacks) .. 46

2.6.3 Insider Attacks ... 46

2.6.4 Denial of Service (DOS) Attack .. 47

2.6.5 Port Scanning ... 47

2.6.6 Backdoor Path Attacks .. 48

2.6.7 User Spoofing .. 48

2.6.8 Penetration Attack ... 49

2.6.9 Malware Injection Attacks... 50

2.6.10 Cross VM Side-Channel Attacks .. 51

2.6.11 Theft of Service Attacks .. 51

2.7 Review of Models Developed .. 53

2.8 Experimental Model on Curbing the Weaknesses of IDS and Firewall on Policy

Violation in Cloud .. 59

2.9 Cloud Security Policy... 61

2.9.1 Security Goals for Cloud Computing .. 63

2.10 Hail marry Attack in Armitage... 64

2.11 Software Development Models .. 64

2.11.1 Waterfall Model ... 64

2.11.2 Rapid Application Development ... 66

2.12 Gaps Identified from Previous Studies... 68

x

2.13 Conceptual Framework .. 69

CHAPTER THREE ... 71

RESEARCH DESIGN AND METHODOLOGY ... 71

3.1 Introduction .. 71

3.2 Research Design ... 71

3.3 Identification of the Weaknesses of IDS and Firewall ... 72

3.4 Prototype Development .. 73

3.5 POVIDE Model Development ... 76

3.6 Network Diagram ... 77

3.7 Population of the Study ... 78

3.8 Data Analysis ... 79

3.9 Reliability and Validity of the Instrument.. 80

3.10 Model Evaluation ... 80

3.11 Research Authorization .. 81

3.12 Ethical Considerations.. 81

CHAPTER FOUR .. 83

DATA ANALYSIS, PRESENTATION, AND DISCUSSIONS ... 83

4.1 Introduction .. 83

4.2 Analysis .. 83

4.3 Weaknesses of IDS and Firewall ... 84

4.3.1. Demonstration of the existing Weaknesses of the Firewall 85

4.3.2. Experimental Setup for the Firewall .. 85

4.3.3Algorithm for Demonstrating Weaknesses of Firewall .. 86

4.3.6. Login Credentials ... 90

4.3.7 Penetration Stage of Firewall .. 93

4.3.8 Scanning Stage of Firewall .. 99

4.4 Weaknesses of Intrusion Detection System ... 102

4.4.1 Demonstration of the existing Weaknesses of the Intrusion Detection system 102

4.4.2 Experimental set up of IDS ... 103

4.4.3 Algorithm for Demonstrating Weaknesses of IDS .. 103

4.4.4 Flowchart Diagram for IDS ... 104

4.4.5 Snort Configuration ... 107

4.4.6 False Positive ... 108

xi

4.4.7 False negative .. 115

4.5 Design of POVIDE Model ... 116

4.5.1 Flowchart Diagram of POVIDE Model... 116

4.5.2 Policy Violation Detection Model Architecture .. 119

4.5.3 POVIDE Model Algorithm ... 121

4.5.4 POVIDE Model Experimental Setup .. 121

4.5.5 Configuration Stage ... 123

4.5.6 Scanning Stage .. 124

4.5.7 Penetration Stage ... 127

4.5.8 Analysis of Logs .. 130

4.6 Proof of Concept .. 132

4.7 Model Quick Design and Prototype Building .. 133

4.7.1 Requirement Gathering.. 134

4.7.2 Use Case Diagram for POVIDE Model .. 137

4.7.3 Sequence Diagram for POVIDE Model .. 138

4.7.4 Class Diagram.. 139

4.7.5 Component Diagram.. 141

4.8 Model Development ... 142

4.9 POVIDE Model Testing ... 143

4. 10 High-Level Overview of the POVIDE Model .. 145

4.10.1 Virtualization Tier ... 146

4.10.2 Application Tier ... 146

4.10.3 File System Tier... 146

4.10.4 Policy Tier ... 146

4.11 Experiment Purpose and Scenarios Used ... 147

4.12 Execution of the Model .. 149

4.13 Evaluation... 150

4.13.1 Criteria ... 150

4.14 Comparison of Existing Detection Systems Versus POVIDE Model........................ 154

CHAPTER FIVE ... 155

SUMMARY, CONCLUSION, AND RECOMMENDATIONS....................................... 155

5.1 Introduction .. 155

5.2 Summary ... 155

xii

5.3 Conclusions .. 156

5.4 Recommendations .. 159

5.4.1 Policy recommendations.. 160

5.4.2 Recommendation for Future work ... 161

REFERENCE ... 163

APPENDICES .. 180

Appendix I: Evaluation Form ... 180

Appendix II: Letter of Introduction .. 181

Appendix III: Authorization letter from NACOSTI .. 182

Appendix IV: Permit from NACOSTI ... 183

Appendix V: Sample code.. 184

xiii

LIST OF FIGURES

Figure 1: Classification of Detection tools ... 17

Figure 2: Intrusion Detection System .. 19

Figure 3: Snort IDS .. 22

Figure 4: Intrusion Prevention System .. 26

Figure 5: Firewall ... 27

Figure 6: Flowchart of a firewall ... 30

Figure 7: FlowGuard framework ... 42

Figure 8: Virtualized Computing .. 42

Figure 9: Threat Model .. 44

Figure 10: Ucloud Architecture .. 59

Figure 11: IDS using CAPTCHA as a trap .. 60

Figure 12: Conceptual Framework .. 70

Figure 13: Rapid Application Development ... 72

Figure 14: Rapid Prototyping .. 74

Figure 15: Network Diagram ... 78

Figure 16: Firewall Setup .. 86

Figure 17: Flowchart Diagram for Firewall ... 89

Figure 18: Physical Volume Usage ... 90

Figure 19: Login Credentials ... 91

Figure 20: Incorrect Logging ... 91

Figure 21: Connection to the network ... 92

Figure 22: Penetration of Exploit ... 94

Figure 23: Exploited File ... 96

Figure 24: Exploited Virtual Machine ... 97

Figure 25: Saved Captured file .. 97

Figure 26: Screenshot File ... 98

Figure 27: Scanning by Internal Network... 100

Figure 28: Tools used for Scanning .. 101

Figure 29: Zenmap .. 102

Figure 30: IDS Setup .. 103

Figure 31: Flowchart Diagram for IDS .. 106

xiv

Figure 32: Snort Configuration .. 107

Figure 33: Log File .. 108

Figure 34: False Alert .. 109

Figure 35: Start Apache2 ... 110

Figure 36: Exploiting Tools ... 111

Figure 37: Metasploit ... 112

Figure 38: Launching an Exploit ... 113

Figure 39: Downloaded .. 113

Figure 40: Virtual Machine versus the attackers' Machine .. 114

Figure 41: IDS Router Connection .. 115

Figure 42: Flowchart Diagram of POVIDE Model ... 118

Figure 43: Policy Violation Detection Model Architecture ... 120

Figure 44: POVIDE Model Setup .. 122

Figure 45: Configuration Stage... 123

Figure 46: Scanning ... 125

Figure 47: Allowed and Denied Ports .. 126

Figure 48: Normal Site .. 127

Figure 49: False positive .. 128

Figure 50: Exploited Application .. 129

Figure 51: False negative .. 130

Figure 52: Analysis of logs .. 131

Figure 53: Analysis of tcpdup.log .. 132

Figure 54: Attack Responses Rules ... 132

Figure 55: Model Quick Design .. 133

Figure 56: Requirement Gathering .. 134

Figure 57: Functional Requirement ... 135

Figure 58: Non- Functional Requirements for POVIDE Model .. 136

Figure 59: Use Case Diagram of POVIDE Model .. 137

Figure 60: Sequence Diagram of POVIDE Model ... 138

Figure 61: Class Diagram ... 140

Figure 62: Component Diagram .. 142

Figure 63: POVIDE Model Interface ... 143

Figure 64: List of Logins ... 145

Figure 65: High-level Overview of the POVIDE Model ... 147

xv

Figure 66: POVIDE Model Execution.. 149

xvi

LIST OF TABLES

Table 1: Types of Intrusion Prevention System ... 26

Table 2: Policy and Baseline Controls ... 62

Table 3: Strength and Weaknesses of Sdlc Models ... 67

Table 4: Organizations and Institutions ... 79

Table 5: Reliability and Validity Test Results .. 80

Table 6: Evaluation Procedure ... 81

Table 7:Weaknesses of IDS, IPS, and Firewall ... 85

Table 8: Criteria for Assessing Goodness of Fit .. 144

Table 9: Analysis of Parameter Estimates ... 144

Table 10: Evaluation Criteria ... 151

Table 11: Comparison of Existing Detection System Versus Povide Model 154

xvii

LIST OF ABBREVIATION AND ACRONYMS

Abbreviations Meaning

AC Access Control

AD Anomaly Detection

ADS Anomaly Detection System

AUP Acceptable Use Policy

AWS Amazon Web Service

CSA Cloud Security Alliance

CSP Cloud Service Provider

DAC

DIDS

Discretionary Access Control

Distributed Intrusion Detection Systems

Desvi Detection SLA violation infrastructure

DMZ Demilitarized Zone

DoS Denial of Service

DDoS Distributed Denial of Service

ERP Enterprise Resource Planning

FIM Federated Identity Manager

GCCIDS Grid and Cloud Computing Intrusion Detection System

SaaS Infrastructure as a Service

IDM Internet Download Manager

IDP Intrusion Detection and Prevention

IDS Intrusion Detection System

IPS Intrusion Prevention System

KVM Kernel-based Virtual Machine

NETM Network Monitoring Application

xviii

NIDS Network Intrusion Detection System

PaaS Platform as a Service

POVIDE Policy Violation Detection Model

QoS Quality of Service

SaaS Software as a Service

SD Signature Detection

SDKs Software Development Kits

SLA Service Level Agreement

SMVR Secure Management Techniques for Virtualized Resources

SSLA Security Service Level Agreement

StegAD Steganography Active Defence

SYN Synchronize

TCP Transmission Control Protocol

UAP User Acceptable Policy

UML Unified Modelling Language

UTM Unified Threat Management

VCL Virtual Computing Laboratory

VESPA Virtual Environment-based Self Protecting Architecture

VM Virtual Machines

VMM Virtual Machine Manager

VPN Virtual Private Network

xix

OPERATIONAL DEFINITION OF TERMS

The attack is an attempt to actively exploit weaknesses in a cloud

environment.

Model is a program that is designed to detect and prevent intrusions in

real time.

Virtual machine (VM): is an emulation of a physical computer system. It provides the

functionality of a normal working physical computer system.

Cloud computing: means storing and accessing data and programs on the Internet

as an alternative to a computer.

Detect: is to discover or identify the presence or existence of a

violation

Intrusion detection is the identification of the actions occurring in a computer

system or network and analyzing them for signs of possible

concern, which are violations to computer security policies or

threats

IT Infrastructure: as a combined set of hardware, software, networks, facilities,

including all of the information technology-related equipment,

used to develop, test, deliver, monitor, control or support IT

services

xx

Policy Violation is a certain reason or event of discharge that is said to be

unlawful, and which violate the guidelines or policies laid

down by the model.

Resource pooling: Physical computer systems and virtual resources that are not

used are dynamically assigned and reassigned according to the

demand for use.

Sandbox: is the facility to examine the host system that is prohibited or

restricted. In this sense, sandboxes are a detailed example of

virtualization.

Virtual Box is open source software used to hold POVIDE Model

Cloud Environment: is using a web-based application for every task rather than

installing software or storing data on a computer

1

CHAPTER ONE

INTRODUCTION

1.1 Introduction

This chapter gives a brief background of the main concepts and problems informing

this study. It further proceeds to state the research problem, outlines the research objectives

and research questions. It also provides the justification for carrying out the research in the

selected area.

1.2 Background of the Study

The number of business organizations moving towards the cloud is increasing very

rapidly. The ease of use and the connectivity the cloud provides are highly useful but the

risks involved and malicious intrusions are also increasing day by day. Most organizations

consider the deployment of different types of protection systems to curb various malicious

activities. The exploitation of computer networks is getting more common. It is very serious

for a business organization as well as users to guard their data from severe threats that would

aim to steal or interfere with their information.

 According to Stanoevska-Slabeva & Wozniak (2010), the cloud is the services or

demand resources over the Internet scale. Cloud computing is a style of computing in which

dynamically scalable and often virtualized resources are provided as a service over the

Internet. Cloud Computing has transformed many organizations in several ways. First,

organizations can consolidate the infrastructure, since the deployment of virtual machines can

replace the use of physical machines. Since there are fewer computers, people and spaces

being used, these help organizations reduce the operational costs in the long-term

(Ramachandran et al., 2015).

2

The cloud has become an increasingly popular service due to the numerous

advantages it possesses. These include high computing power, cheaper cost of services, better

performance, scalability, and accessibility among others (Hashem et al., 2015). It

dramatically lowers the cost of entry for small firms trying to benefit from compute-intensive

business analytics that was previously available only to large corporations. It makes it easier

for enterprises to scale their services, which are increasingly reliant on accurate information

according to client demand. Cloud also makes possible new classes of applications and

delivers services that were not possible before (Avram, 2014). It has revolutionized the IT

world with the provisioning of its services infrastructure, less maintenance cost, data, and

services availability assurance, rapid accessibility, and scalability (Garg et al., 2013).

The service has three basic abstraction layers for example system layer, which is a

virtual machine abstraction of a server, platform layer for the virtualized operating system of

a server, and application layer that includes web applications (Rosenblum & Garfinkel,

2005). It also has three service models which are Platform as a Service (PaaS), Infrastructure

as a Service (IaaS) and Software as a Service (SaaS) models. PaaS model facilitates users by

providing a platform on which applications can be developed and run. IaaS deliver services to

users by maintaining large infrastructures like hosting servers, managing networks and other

resources for clients. SaaS model makes user worry-free of installing and running software

services on its own machines (Subashini, & Kavitha, 2011)

As cloud technology becomes immensely popular among these businesses, the

question arises: Which cloud model should one consider for business? There are four types of

cloud models available in the market: Public, Private, Hybrid, and Community (Goyal, 2014).

However, since this kind of computing paradigm is new, it has shortfalls that need to be

addressed to make cloud-computing services more convenient to use. Shortfalls include

reliability, connectivity, open access, security and privacy (Stergiou et al., 2018). Security is

3

viewed as one of the main adoption stoppers to cloud computing and the complexity of

infrastructure involved leaves the door open to various threats coming from outside and

within. Intrusions, malware or security policy violations of curious or malicious users are just

but a few. Control assets and information policies are required in order to protect the

organizational data of the cloud-computing environment. Acceptable use policy is needed to

make sure controls and monitoring of services are provided. Acceptable use policy is a set of

rules applied by organizational network administrators to restrict the ways in which the

network is used and set guidelines as to how it should be used.

Different network administrators use different types of network-based and host-based

security software to detect malicious activities in the cloud. The main target of the assailants

is to make an attack on the presented resources in the Cloud computing settings (Hameed et

al., 2016).

1.2.1 Detection systems

Intrusion is the act of violating the security policy that pertains to an information

system. Intrusion detection can be defined as the act of detecting actions that attempt to

compromise the confidentiality, integrity or availability of a resource (Patel et al., 2010).

Intrusion detection is the process of monitoring the events occurring in a computer system or

network and analyzing them for signs of possible incidents, which are violations of computer

security policies, acceptable use policies or standard security practices (Scarfone, & Mell,

2012). Incidents have many causes such as malware, attackers gaining unauthorized access to

systems from the Internet, and authorized users of systems who misuse their privileges or

attempt to gain additional privileges for which they are not authorized (Kaur et al., 2014).

Thus, detection systems monitor and alert attacks in the cloud. There are different types of

4

detection systems used in the cloud. The most used ones are Intrusion Detection System and

Firewall.

Intrusion Detection System (IDS) is a software tool or device that monitors the system

or activities of the network for policy violations or malicious activities and generates reports

to the network administrator. IDS may be used to monitor a network from outside threats,

like monitoring a network for problems caused by such events as running an application that

accesses sites or downloads software that is not allowed, and malicious network activities

(Kaur et al., 2014). The system collects and analyzes data from a range of areas within a

computer or a network to identify possible security violations. The intrusions may include

attacks both from outside the organization as well as within the organization. Different

methods can be used to identify intrusions but each one is specific to a specific method. The

most important goal of an intrusion detection system is to detect the attacks proficiently.

Furthermore, it is equally important to detect attacks at the beginning stage in order to reduce

their impacts (Jabez, & Muthukumar, 2015). However, the current cloud IDS fails short of

the practical capability to prevent attacks at its initial stage. Thus, Intrusion Prevention

System (IPS) is preferred over IDS in order to automatically take action towards suspected

network activities. The IPS can be constructed based on IDS because the detection function is

needed in an IPS solution. However, most existing IPS solutions are designed for traditional

network and simple migration is not effective enough to detect and defend malicious attacks

in the cloud (Bace, & Mell, 2001).

Another prevention tool is a firewall. A firewall is a combination of hardware and

software that isolates an organization‘s internal network from other networks, allowing some

packets to pass and blocking others. It functions to avoid unauthorized or illegal sessions

established to the devices in the network areas it protects. Firewalls are configured to protect

against unauthenticated interactive logins from the outside world. However, Firewalls cannot

5

prevent attacks coming from Intranet (Kaur et al., 2014). Thus, detection systems are

essential in detecting intrusions. Detection and prevention tools have weaknesses that need to

be solved. Equally, methods need to detect the attacks as they arise and prevent the attackers

from producing threat activities inside the cloud respectively.

1.3 Statement of the Problem

Most organizations nowadays use of acceptable use policy to stipulate the events illegal to the

users of an organization‘s IT infrastructure. Every user is required to follow all the policies

specified in the acceptable use policy document. Despite the use of existing detection and

prevention systems such as IDS, IPS, and Firewall to detect and prevent malicious activities

and to analyze data that originates from the host computer, some users circumvent detection

and prevention tools to access the cloud. The greatest challenge with most of the detection

and prevention technologies is the generation of false positives or false alerts. Furthermore,

existing detection tools are unable to perform analysis if traffic is encrypted in real time.

Despite firewalls widely accepted, limitations make it less efficient with the current security

challenges. These include the inability of the firewall to prevent attacks coming from

Intranet. This limits its ability to fend off internal attacks. The firewall also uses a set of rules

that are manually configured to differentiate genuine traffic from non-legitimate traffic.

Additionally, firewalls cannot react to a network attack nor can it initiate effective counter-

measures (Hock, & Kortis, 2015). On the other hand, in spite of having IDS and IPS as

detection and prevention tools, they both have some limitations that hinder them from being

able to detect and block attacks. Some of the challenges they pose include susceptibility to

protocol-based attacks that mean that encrypted packets are not processed by IDS. Another

challenge is that IP packets can still be faked (Chowdhary et al., 2014). Moreover, the

network administrator is mandated to scrutinize the attack once it is detected and reported.

6

Therefore, there is a need to develop a Policy Violation Detection Model to solve the

aforementioned challenges.

1.4 Purpose of the Study

The purpose of the study was to develop a model for detecting Information Technology

infrastructure policy violations in a cloud environment.

1.4.1 Objectives of the Study

i. To identify weaknesses in IDS, IPS and firewall as tools of intrusion detection and

prevention

ii. To demonstrate the weaknesses of IDS, IPS and firewall on policy violation in the

cloud

iii. To develop a model to detect and identify policy violation in real time traffic

iv. To evaluate the performance of the model in curbing the weaknesses of IDS, IPS, and

firewall on policy violation in the cloud

1.4.2 Research questions

i. What are the weaknesses in IDS, IPS, and firewall as tools of Intrusion Detection and

Prevention?

ii. How can you demonstrate the weaknesses of IDS, IPS, and firewall on policy

violation in the cloud?

iii. How can you develop a model to detect and identify policy violations in real time

traffic?

iv. Does the performance of the model curb the weaknesses of IDS, IPS, and firewall on

policy violation?

7

1.5 Justification of the study

The policy violation detection model stands to benefit organizations and institutions

using cloud computing. The model is meant to detect hosts in real time trying to violate

policies by terminating the node session that is being used for the attack on the network

which is critical in this era of cloud computing.

The existing detection and prevention tools such as IDS, IPS and firewall have

weaknesses of sending false alarms. The greatest challenge with the majority of detection

technologies is the generation of false positives or false negatives. The policy violation

detection model drastically deals with false alarms. This is because either any activity is

authorized or unauthorized terming it efficient at detecting attacks.

Most detection technologies have challenges in identifying unknown attacks. This

means that they can only detect known attacks. Policy Violation Detection Model identifies

the unknown and known attacks in real time.

It has also been pointed out that existing detection tools are incapable of performing

analysis when the traffic is encrypted. They cannot detect attacks inside a virtual network

contained by the hypervisor. The model is able to identify, detect, and block threats in real

time and curb internal and external attacks.

Finally yet importantly analytical module has a limited ability to analyze the source

information that is collected during intrusion detection. Only a portion of the source

information is buffered. There is a large volume of traffic that is not analyzed. Therefore, the

network administrator will not able to tell where the threat originated. POVIDE Model is able

to analyze the whole traffic. It is also able to tell where the attacks originated from through

submitting the IP address of the attacker's machine.

8

Lastly, the implementation of the model leads to the satisfaction derived from having

contributed to the development of a solution that solves the problems affecting the

organizations and institutions.

1.6 Scope of the Study

Expert users evaluated the model on its ability to curb unauthorized intrusions. It was

geared towards addressing the weaknesses of existing detection and prevention systems

specifically IDS, IPS, and firewall.

1.7 Limitations of the Study

The experimentation of the developed POVIDE Model required at least 8GB of

memory in order to work at a convenient speed. To overcome this limitation a new laptop

with the required specification was purchased.

There was A firewall constraint concerning the Cloud technology used. However, the

use of open source tools provided a way of opposing these concerns because some open

source tools do work with Linux-based Cloud systems with modest or no alteration.

Finally, there were limitations in terms of the number of physical systems available

for the experiments, where more than two systems were needed. These were replaced with

alternative Virtual Machines. Therefore, an experiment was conducted using VMs so that

they could be compared.

1.8 Assumptions of the Study

The development of the POVIDE Model assumed that specific experts who tested the

model had the knowledge of policy violations in the cloud and that they have internet-enabled

devices that can access and download data from the network. It is also assumed that the

9

experts who tested the POVIDE Model gave honest and expert opinions during the

experiment. This assumption was realized by making sure that the individuals were trained on

the Model.

Lastly, the user‘s access process also assumed that the registration data would be

crosschecked against the cloud service providers‘ or network admin.

10

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The purpose of this chapter is to provide a summary of the literature on the

developments in the area of policy violations in a cloud environment. It starts with an

overview of what has been done by scholars in the cloud environment. Then it continues to

review literature based on objectives and provide relevant literature with knowledge used to

develop the model. Furthermore, the chapter gives compressive literature on cloud

computing. Finally, the chapter describes the conceptual framework for this research.

2.2 Overview of Cloud Environment

As discussed earlier, cloud computing presents users with access to low-cost

computing resources, powerful processing, storage, and networking. While these resources

obviously provide benefits to numerous users, there are also concerns that users can easily

gain access thus putting the security of the cloud into question (Zhou et al., 2010).

Numerous research works propose intrusion detection systems. The proposed systems

face security challenges while in use in public and private cloud infrastructures, and involve

network administrators who must understand and be concerned with network security (Jing et

al., 2014). The network must be monitored given the increased risk posed by interrelated

computers. According to Snapp et al. (2017), the intrusion detection system is used to

monitor a network from external threats. The network monitoring system can be used to

monitor the network for harm triggered by an event such as malicious applications and

intrusions. It also monitors threats that can crash network servers, malicious network

activities, and network connections, among others.

According to Quah and Rohm (2013), respondents believed that cloud computing

made it harder for organizations to find a way to protect users' data and the biggest concern

11

was regarding the risk of losing control over data locations and illegal access to data.

Theoharidou et al., (2013) concluded that auditors and authorities need to be able to hold

service providers responsible for their actions, enforcing rules and regulations through

penalties and other mechanisms, and ensuring that problems are remedied promptly and

sufficiently.

According to Pearson (2013), organizations must trust their cloud service providers.

Organizations must make sure that their clients also trust the same cloud service provider.

They must have knowledge of the cloud. A cloud service provider and the customer often

enter into a contractual relationship to establish trust. Typically, an organization may be

compensated in an event that the service is not delivered as expected. However, in the

modern computing world, establishing trust in cloud computing is related to preventing a

trust violation rather than to compensate for a violation in case it occurs (Velte et al., 2010).

For any modern organization, an irreparable security breach or compensation cannot bring

back lost data or the organization‘s reputation.

Detecting misuse by legitimate users abusing their privileges is a complex, multi-

faceted problem. This is because malicious insiders can engage in a variety of activities and

use knowledge of their organization‘s systems and networks to avoid detection (Maloof, &

Stephens, 2014). Modern malware designers and cyber attackers are innovative and

constantly seeking to circumvent existing measures generating different versions of malware

using alteration. Existing IDS and IPS approaches are considered to detect unauthorized

access attempts and Distributed Denial of Service (DDoS) attacks (Shi et al., 2012). For

example, Alsunbul et al. (2014) presented a network defense system for detecting and

preventing unauthorized access attempts by dynamically generating a new protocol to replace

the standard protocol. The aim is to confuse scanning attempts. The network path is also

https://www.sciencedirect.com/topics/engineering/malware
https://www.sciencedirect.com/topics/engineering/access-attempt
https://www.sciencedirect.com/topics/engineering/denial-of-service-attack

12

changed periodically to prevent unauthorized access and scanning of traffic. However, the

number of packets generated can be excessive.

2.2.1 Characteristics of the Cloud Computing

According to Gong et al., (2010) essential characteristics of cloud computing were

first defined by the National Institute of Standards and Technology (NIST) and have

subsequently been redefined by a number of scholars and experts. These characteristics are

elaborated below-

2.2.1.1 Flexibility/Elasticity

The on-demand model of cloud provisioning attached with high levels of automation,

virtualization, and ubiquitous, consistent and high-speed connectivity provides for the

capability to rapidly expand or contract resource allocation to service definition and

requirements using a self-service model that scales to as-needed capacity. Since resources are

shared, better utilization and service levels can be achieved (Dash et al., 2014).

2.2.1.2 Accessible Anywhere

According to Wahlgren et al. (2013), cloud customers are capable of accessing their

data and service irrespective of the physical location. Therefore, the cloud user has no control

or whereabouts of the location of the assets. Likewise, cloud providers do not have

restrictions over the location of its users.

13

2.2.1.3 Reliability

Clouds are usually copied on multiple redundant sites which make cloud computing

suitable for business continuity and disaster recovery. Consequently, cloud users can be

located in areas where electricity and real estate prices are lower eventually lowering their

start-up and running costs (Rittinghouse, & Ransome, 2016).

2.2.2 Cloud Computing Service Models

Understanding the layer dependence of cloud service models is very dangerous to

analyze the security risks of cloud computing. These service model layers are:

2.2.2.1 Infrastructure-as-a-Service

This cloud service model normally provides access to networking structures,

computers virtual or on dedicated hardware, and data storage space (Sen, 2015). Users have

allocated storage capacity and start, stop, access and configure the virtual servers and storage

as desired. Cloud providers connect various operating systems and their application software

on the cloud communications thereafter installing their applications (Tao et al., 2014). In this

representation, the cloud users are accountable for maintaining the operating systems and the

application software. Infrastructure-as-a-service (IaaS) cloud providers classically charge

their customers on convenience computing beginning with the cost that reflects the number of

resources allocated and consumed (Erl et al., 2013).

2.2.2.2 Platform-as-a-Service

In the PaaS models, the cloud users do not control the networking structures, essential

software, hardware or servers. The cloud providers supply a computing platform, which

14

comprises the operating system (OS), programming language execution environment, the

database, and web server (Oliveira et al., 2014). Consequently, the application designers and

developers run their software solutions on a cloud platform without paying for expensive

hardware and software layers that usually have significant costs. PaaS eliminates the need for

organizations to manage the original infrastructure and allows the cloud users to focus on the

operation and management of their applications (Almorsy et al., 2016).

2.2.2.3 Software-as-a-Service

SaaS offers cloud users with a complete artifact that is run and managed by cloud

providers. In the SaaS model, the customer does not supervise or control the principal cloud

infrastructure as well as networking structures, computers virtual or on dedicated hardware,

and data storage space except the limited user-specific application configuration settings

(Huang, & Wu, 2017). All these models are known to be very promising internet-based

computing platforms.

Kavis (2014) concluded that these models could result in a loss of security over

customer data. This frequently happens because the enterprise IT assets are hosted on third-

party cloud computing platforms. Where cloud computing can help organizations achieve

more by paying less and breaking the physical limitations between IT infrastructure and its

users.

2.2.3 Cloud Delivery Models

There are four basic cloud delivery models, as outlined by NIST (Liu et al., 2011)

based on providers of cloud services. The organizations may employ one model or a

combination of different models for efficient and optimized delivery of applications and

business services. These four delivery models are:

15

2.2.3.1 Public Cloud

According to Sen (2015), public clouds are the most used among end-users due to

their speedy setup time and low cost. Service providers of this type of cloud usually partition

their physical servers and lease these portions to the cloud users. Consequently, the end-users

have the notion of managing a vast computational power and storage capacity. Nevertheless,

public clouds suffer from a lack of infrastructure transparency which makes them less

attractive to large organizations. On the other hand, Private clouds are not open to public

users in the sense that their infrastructure is controlled by private organizations.

2.2.3.2 Private Cloud

A private cloud is set up within an organization‘s internal activity data center. It is

easier to align with security, compliance, and regulatory requirements, and provides more

enterprise control over deployment and use. In the private cloud, scalable resources and

virtual applications provided by the cloud providers are joint together and accessible to cloud

users to share and use. It varies from the public cloud in that all the cloud resources and

applications are managed by the organization itself, similar to Intranet functionality.

Consumption on the private cloud is much more secure than that of the public cloud because

of its precise internal coverage. Only the organization and selected stakeholders may have

access to operate on a specific Private cloud (Puthal et al., 2015)

2.2.3.3 Hybrid Cloud

According to Gangwar et al. (2015), a hybrid cloud combines the features of the

public and private cloud. This varied environment is appropriate for organizations that have

software or hardware compatibility issues but still, want to take advantage of the vast storage

space and other cloud resources provided by public clouds. An additional reason to prefer

hybrid clouds is its edibility in revealing the organization‘s assets for a limited time to the

16

public users. Hence, an organization‘s resources can be moderately exposed to the public side

of the cloud rather than risking everything on the public cloud (Assuncao et al., 2015).

2.2.3.4 Community Cloud

According to Jula et al. (2014), community cloud in computing is a joint effort in

which infrastructure is shared between numerous organizations. Community with common

concerns are managed internally or by a third party and hosted internally or externally. This is

controlled and used by a group of organizations that have a common interest. The costs are

spread over fewer users than a public cloud but more than a private cloud, so only some of

the cost savings potential of cloud computing are realized.

2.2.4 Detection tools

Detection Tool assists users with the detection of the security vulnerability. There are

two different genres of tools in the intrusion protection world: intrusion detection systems

and intrusion prevention systems as shown in Figure 1. Though they serve a different

function, there is often some overlap between the two types of tools. As its name implies, the

intrusion detection detects intrusion attempts and doubtful activities in general. When it

happens, it classically triggers some sort of alarm or notification. It is then up to the network

administrator to take the required steps to stop or block this attempt. Intrusion detection

systems can be, very expensive. IPS are network security applications, that monitor and

change network, and system activities if found suspicious. The main purpose of IPSs is to

recognize malicious activity and attempt to block or stop that activity (Scarfone, & Mell,

2012). Since they are not in the focus of this report, it is necessary to note here, that they are

important parts of network security and strongly related to intrusion detection. IPSs can be

considered extensions of IDSs (Newman, 2009).

https://en.wikipedia.org/wiki/Computing

17

 Fortunately, there are quite a few free alternatives available out there. The research

has been made on the Internet for some of the common intrusion detection software tools.

These are OSSEC, SURICATE, Snort, and Sagan (Taha, & Hadi, 2019).

Figure 1: Classification of Detection tools

According to Buck and Hanf (2010), promising tools and techniques that can be part

of an IT infrastructure to assist network administrators in detecting Acceptable Use Policy

(AUP) violations are of utmost importance. Such tools and practices can further help in

gathering relevant evidence data from host computers and other IT infrastructures as well.

Furthermore, with the rapidly changing technological environment, it is clear that additional

speedy changes in the way security incidences are detected and the way security data is

analyzed needs to be done. Some of the intrusion detection discussed includes:

Detection tools

IDS IPS

Host -Based IDS Network- Based IPS

Network- Base IDS

Hypervisor- Based IDS

Wireless IPS

Network behavior Analysis

Host -Based IPS Hybrid IDS

18

2.2.4.1 Intrusion Detection System

Intrusion detection systems constantly monitor a given computer network for invasion or

abnormal activity. An IDS gathers and analyzes information from various areas within a

computer or a network to identify possible security breaches. IDS has been used as a vital

instrument in defending the network from malicious or abnormal activity. It is appropriate to

know which intrusions have occurred or are happening. It is easier to understand security

threats, risks and thus be better prepared for future attacks. With the ability to analyze

network traffic and recognize incoming and ongoing network attacks, the majority of network

administrators have turned to IDS to help them in detecting anomalies in network traffic

(Chowdhary et al., 2014).

The current trend for the IDS makes it possible to detect fresh network attacks as

shown in figure 2. The main concern is to make sure that in case of an intrusion attempt, the

system is able to detect and report intrusion. IDSs are usually deployed alongside other

preventive security mechanisms and there are several reasons that make intrusion detection a

necessary part of the entire defense system. First, many traditional systems and applications

were developed without security in mind. In other cases, systems and applications were

developed to work in a different environment and may become vulnerable when deployed.

Intrusion detection uses these protective mechanisms to improve system security.

Furthermore, even if the preventive security mechanisms can protect information systems

successfully, it is desirable to know what intrusions have happened or are happening, so that

we can understand the security threats and risks and thus be better prepared for future attacks

(Feng et al., 2014).

The advantages of this service are the ―round-the-clock‖ aspect, in that the system is

protected even when the user is asleep or else away from any computer hooked up to the

network. Easier to deploy as it does not affect existing systems or infrastructure, Its sensors

19

can detect many attacks by checking the packet headers for any malicious attack like TCP

SYN attack and fragmented packet attack. It monitors traffic in real time. Therefore, network-

based IDS can detect malicious activity as they occur. Additionally, the IDS sensor deployed

outside the firewall can detect malicious attacks on resources behind the firewall (Kaur et al.,

2014).

Figure 2: Intrusion Detection System (Hock, & Kortis, 2015)

According to Syujak (2012), the security of the computer network is a very important

part to maintain the validity and integrity of the data. Besides, it also guarantees the

availability of the services for its users. An attack on the computer network server can occur

at any time, either when administrators are working or not working. Thus, the server security

system is needed to detect whether each incoming packet is the actual data packets. If the

packet is an attacker‘s packet data, the system is expected to block the attacker‘s IP.

According to Khamphakdee et al., (2014), the network security system and Internet Service

Provider (ISP) is an important factor to guarantee the stability, integrity, and data validity.

The implementation of the Intrusion Detection System based on Snort can save money when

buying the software. This is because snort is an open source software. Testing in the IDS

system is done by some attack patterns. It is done to test the ability of snort to detect an attack

against the security system. Based on the testing result among the IDS Snort system with port

20

scan, virus test, buffer overflow, SQL injection, and accessing database, snort can give an

alert if there is an attack on the network system.

When a possible intrusion or suspicious pattern is discovered, an alarm is raised by

IDS. The system is so-called compromised when the overall network structural design does

not relate to the security mechanism. Any attempt at file modification, malicious activity, and

unauthorized entrance can be monitored by the system. An IDS operates by monitoring

system activity through examining the weaknesses of the system, the integrity of files and

analyzing patterns on the basis of past attacks. There is also automatic monitoring of the

Internet to seek the most recent threats, which could lead to a future attack. Generally, IDS

can be grouped into two categories: signature based and anomaly detection. In a signature-

based system, patterns of attack or intruder behaviors are modeled and a system alert sent out

once there is a match detected (Aslahi-Shahri et al., 2016).

This system, however, has limitations and is able to detect only known attacks, and as

such, there should be a frequent update for the attack signatures. On the contrary, the

anomaly detection system considers the behavioral norm of the network or system and

creates a baseline profile of normal activities. Then, any activity not matching the system's

behavioral norm will be deemed as an intrusion. Anomaly detection systems are capable of

detecting the attacks that have been previously known, and therefore, the efficiency of these

systems is more than the efficiency of signature-based systems (Ahmed et al., 2016).

2.2.4.2 Snort-IDS

Snort is an open source network intrusion detection and prevention system. It is

capable of performing real-time traffic analysis and packet logging on IP networks. It can

perform protocol analysis, content searching/matching, and can be used to detect a variety of

21

attacks and probes, such as buffer overflows, and stealth port scans. Snort is a packet sniffer

that monitors network traffic in real-time, examining each packet closely to detect a

dangerous payload or suspicious anomalies. Snort is a popular Intrusion Detection and

Protection System (IDS/IPS) which use for protecting the system‘s risk from the attacker. It

is an open source lightweight software, was developed by Martin Roesch with C language in

1998 Snort can be installed on almost computer architecture and operating system platform.

Furthermore, Snort-IDS also generate an alert in real-time (Naik, 2015).

Snort searches and matches the network traffic‘s data packet with the rules for

checking abnormal data packet traffic. The rules of Snort-IDS are in the form of a single line.

It is easy to read and understand and can be modified. Snort-IDS‘s basic components consist

of the Packet Decoder, Preprocessor, Detection Engine, Logging and Alerting System, and

Output Modules.

The Snort-IDS utilize the rules matching with the data packet traffic network. Figure

3 shows the basic structure of the Snort-IDS rules which are divided into two logical parts the

rule header and the rule option. It contains the criteria definition for matching between a rule

and the data packet traffic network. In addition, the action field of the rule header also able to

define the type of action such as passes, log alerts. The rule options follow the rule header

and they are within a pair of parentheses (Dietrich, 2017). According to Khamphakdee et al.,

(2014) each option presented the tool that helps the network administrator to make the Snort-

IDS rules and alert via Graphical User Interfaces (GUI).

22

Figure 3: Snort IDS (Khamphakdee et al., 2014)

Snort-IDS are the attacking detection tool, which the researchers around the world

interested in. Beside Patel and Sonker (2016) introduced the signature-based development

with Snort for analyzing the abnormal connection and they utilize Basic Analysis and

Security Engine (BASE) for displaying the generated alert results of the Snort-IDS.

Nevertheless, these researches did not improve the rules to increase the efficiency of

attacking detection.

According to Veerman and Oprea(2012), different SQL Injection attacks and their

solutions based on the SNORT tool was proposed. They captured some SQL Injection attack

patterns however, their attack patterns are only extracted signature-based features, which

cannot offer protection against more recent attacks. Their approach can detect insider attacks

up to 70% of all database attacks such as resource exhaustion, password attack, and malware

attacks such as viruses, worms, and Trojan horses.

Warneck (2007) uses many ways for defeating the SQL injection attack to prevent the

vulnerabilities related to web attacks by using the SNORT tool for detecting various types of

SQL injection attacks in both the database level and the web application level. Dabbour et al.

23

(2013) presented three types of attacks, such as SQL injection attacks, XSS (Cross-Site

Scripting) attacks, and command execution attacks. They also use SNORT IDS for detection

and Damn Vulnerable Web Application (DVWA) for evaluating and testing the SNORT

rules. AINabulsi et al. (2014), investigated how to alert and detect an SQL injection, XSS,

query command injection, and OS command injection attacks on web applications using

SNORT tools. They use Samurai-WTF (Web Testing Framework) distribution, Damn

Vulnerable Web Application (DVWA), and Security Onion instances for SNORT, in their

experimental process. According to Alnabulsi et al., (2014) SNORT tools for detecting SQL

injection and XSS attacks were presented. They implemented web attack detection using IDS,

which is an algorithm that uses a greedy approach by selecting the best attribute to split the

dataset on iteration.

The security system using Snort has some disadvantages, such as detection of

flooding data based on size only; the result in the system will not give any action. It can only

be used to do Intrusion Detection behind the firewall, connecting it to the Internet generates

too many positives. Snort must be twisted to reduce the 'false positives' specific to your

environment. Unidirectional Ethernet cables should be used for sensors installation to avoid

security concerns (Bul‘ajoul et al., 2015).

2.2.4.3 Intrusion Detection Techniques by IDS

The most common intrusion detection techniques used by IDS are based on the

behavior of users and signatures of known attacks. To improve the performance of IDS, it is

better to use a combination of these techniques.

2.2.4.4 Signature-Based Detection

Signature-based detection is performed by comparing the known information with the

database of signatures. A signature can be an earlier defined set of rules or patterns that are

24

related to known attacks. The signature-based technique is also recognized as a misuse

detection technique (Liao et al., 2013). Nevertheless, it is incapable to identify unknown

attacks in the cloud (Modi et al., 2013).

2.2.4.5 Anomaly-Based Detection Technique

Anomaly-based detection technique compares current user activities against

previously loaded logs of users. It produces a large number of false alarms because of

irregular network and user behavior. It also requires huge data sets to train the system for

normal user profiles (Kene, & Theng, 2015). An anomaly detection system, unknown attacks

can be detected at different levels. Monitoring intrusions from large data becomes difficult at

different levels (system, network) of the cloud.

2.2.4.6 Hybrid Detection Technique

The hybrid intrusion-detection-system is the combination of signature and anomaly-

based detection method, which is called a hybrid detection technique. The idea behind the

implementation of hybrid detection is to detect both management properties with less human

interaction known and unknown attacks based on signature and anomaly detection techniques

(Patel et al., 2013). Hybrid based IDSs detect intrusions by analyzing application logs, system

calls, filesystem modifications password files, binaries, access control lists, and capability

databases and other host states and activities (Wang, & Jones, 2017).

2.2.5 Intrusion Prevention System

The Intrusion Prevention System (IPS) is a tradition effort to monitor and secure a

cloud-computing system. IPS can respond to detected threats by triggering a variety of

prevention actions to tackle malicious activities. IPS is able to prevent a detected threat

immediately. Incriminated packets are discarded however a little delay cannot be avoided

25

because every packet is examined with the IPS subsequently deciding if the packet will be

dropped or allowed entry into the secured network (Hock, & Kortis, 2015).

The main functions of intrusion prevention systems are to identify malicious activity

and attempt to block or stop the malicious activity. Intrusion prevention systems monitor

network traffic or system activities for malicious activity. Intrusion prevention systems are

placed in-line and are able to actively prevent and/or block intrusions that are detected

(McDougal et al., 2014).

There are four types of prevention systems they are Network (NIPS), NBA, WIPS and

Host (HIPS) as shown in Table 1. These systems watch network traffic and automatically

take action to protect networks and systems. The drawback of IPS is false positive and

negatives. False positive is defined to be an event, which produces an alarm in IDS where

there is no attack. False negative is defined to be an event, which does not,produces an alarm

when there is an attack takes place. An inline operation can create bottlenecks such as a

single point of failure, signature updates, and encrypted traffic. The actions occurring in a

system or network is measured by IDS (Vijayarani & Sylviaa, 2015).

It is important to note that after the implementation of mistaken rules the IPS will also discard

secure traffic while IDS just creates many mindless reports as shown in Figure 4. Defense

systems are required to successfully determine the need for their use before they can be

executed, otherwise, the user experience will deteriorate (Carlin et al., 2015). Intrusion

Detection systems have become a necessary addition to the security infrastructure of most

organizations, precisely because they can stop attackers while they are gathering information

about your network (Latha, 2016).

26

Figure 4: Intrusion Prevention System (Hock, & Kortis, 2015)

IDS can prove to be an invaluable tool in the early detection of malicious activity

helping to prevent attacks from succeeding. They can also gather forensic evidence.

Nonetheless, traditional IDS are largely ineffective when applied to cloud computing given

its openness. Patel et al., (2013) explored the requirements of IDS in the cloud architecture

given the ineffectiveness of traditional methods by asking what criteria and requirements

should an IDS meet to be deployed on the cloud.

Table 1: Types of Intrusion Prevention System (Scarfone, & Mell, 2012)

Types of IPS How it is used

Network-based IPS (NIPS) Monitors traffic in the network and blocks suspicious

data stream.

Wireless Intrusion Prevention

Systems (WIPS)

Monitor actions in wireless networks. Commonly, it

detects wrong configured wireless access points, man-

in-the-middle attacks, Mac addresses spoofing

Network Behavior Analysis (NBA) Analyzes network traffic and look for untypical

streams, such as DoS and DDoS attacks.

Host-based Intrusion Prevention

(HIPS)

Is resident program, it detects suspicious actions on the

computer

27

2.2.6 Firewall

A firewall is a combination of hardware and software that isolates an organization‘s

internal network from other networks, allowing some packets to pass and blocking others. It

functions to avoid unauthorized or illegal sessions established to the devices in the network

areas it protects. Firewalls are configured to protect against unauthenticated interactive logins

from the outside world. The firewall can be thought of as a pair of mechanisms: one, which

exists to block traffic, and the other, which exists to permit traffic as shown in Figure 5.

Numbers of firewalls can be deployed in the proper positions of the managed network for

cooperative, integrated, and in-depth network security protection (Kaur et al., 2014).

Advantages of Firewalls include preventing traffic, which is not legitimate. Firewalls

can filter those protocols and services that can be easily exploited. It helps in protecting the

internal network by hiding the names of internal systems from the outside hosts. Firewalls

concentrate on extended logging of network traffic on one system (Strohmeier et al., 2014).

Figure 5: Firewall (Fernandez et al., 2014)

28

2.2.7 Types of Firewall

There are many different types of firewalls, each of which works in different ways to

protect different types of resources, both within data centers and corporate perimeters and

outside in the cloud. Here are the most important types of firewalls:

2.2.7.1 Packet - Filtering Router

A packet-filtering router applies a set of rules to each incoming and outgoing IP

packet and then forwards or discards the packet. The router is configured to filter packets

going in both directions. Filtering rules are based on information contained in the network

packet, which includes the source IP address, destination IP address, source and destination

transport level address, IP protocol field and interface. The packet filter is typically set up as

a list of rules based on matches to fields in the IP or TCP header. If there is a match to one of

the rules, then the rule is invoked to determine whether to forward or discard the packet. If

there is no match to any rule, then a default action is taken. The default action can either be to

discard or forward the packet (Gamage et al., 2016).

2.2.7.2 Application Level Gateways

An application level gateway acts as a relay of application-level traffic. It is also

known as a proxy server. The user contacts the gateway using a TCP/IP application, such as

Telnet or FTP, and the gateway asks the user for the name of the remote host to be accessed.

When the user responds and provides a valid user ID and authentication information, the

gateway contacts the application on the remote host and relays the TCP segments containing

the application data between the two endpoints. If the gateway does not implement the proxy

code for a specific application, the service is not supported and cannot be forwarded across

the firewall. Application-level gateways tend to be more secure than packet filters. It is easy

29

to log and audit all incoming traffic at the application level. The main disadvantage of this

type of gateway is the additional processing overhead on each connection (Kaur et al., 2014).

2.2.7.3 Circuit Level Gateways

The circuit-level gateway can be a standalone system or it can be a specialized

function performed by an application level gateway for certain applications. A circuit level

gateway does not permit an end-to-end TCP connection; instead, the gateway sets up two

TCP connections. One connection is set up between itself and a TCP user on an inner host

and one between itself and a TCP user on an outside host. Once the two connections are

established, the gateway typically relays TCP segments from one connection to the other

without examining the contents. The security function consists of determining which

connections will be allowed (Marsico, 2015). An advantage of Circuit level gateways is that

it is comparatively inexpensive and provides anonymity to the private network. The

Disadvantage of Circuit level Gateways is that it does not filter Individual Packets. After

Establishing a Connection, an Attacker may take advantage of this (Naik, & Jenkins, 2016).

2.2.8 Flow Chart of a Firewall

The control logic of the firewall system receives incoming and outgoing connections

from the network and client machine respectively. In response to a connection request

initiating a connection between respective endpoints in the network and client machine.

Control logic performs a security assessment comprising obtaining from at least one of the

network and client machine information indicative of the security state of the endpoint

therein and allows or inhibits the connection in dependence on the result of the security

assessment. The security assessment may be performed in accordance with a security policy

of the system, and different security assessments may be performed for different connection

30

requests in accordance with the security policy as shown in Figure 6 (Jansen, & Tanner,

2014).

Figure 6: Flowchart of a firewall (Jansen, & Tanner, 2014)

2.3 Weaknesses of Existing Detection Tools

Weakness exploits would end in security breaches or violations of the model security

policy causing data leakage or trust issues. Fevre et al. (2012) aver that network

31

administrators often give staff policies the benefits of doubt because employees do not

always break the rules for malicious or vindictive reasons. Rather personnel may not even

know that certain actions break the company‘s policy. Nevertheless, thousands of breaches

occur daily and they cost companies millions of dollars. Breaches occur when employees

store organization information in third-party cloud services or when they use a blacklisted

app, jailbroken phone or other devices that do not meet the organization guidelines.

Bardach and Patashnik (2015) posit that guidelines for devices and software minimize

the way people really work and they do not need to go round restrictions. Educating staff on

the risks of exposing company data increases employees‘ satisfaction, staff morale, and

convenience. In order to fight IT infrastructure policy violations and gather relevant

incidence information in a LAN environment, law enforcement agencies have also started

incorporating the collection and analysis of digital evidence data into their infrastructures.

Nevertheless, they are yet to consider application deployment and provisioning strategies

(Dagada, 2014).

2.3.1 Weaknesses of Intrusion Detection System

Some of the weaknesses of IDS are as follows not an alternative to strong user

identification and authentication mechanism. It is not a solution to all security concerns. It

will not prevent incidents by itself; it merely helps to uncover attacks. IP packets can still be

faked and Human intervention is required to investigate the attack once it is detected and

reported. Additionally, False positives occur when IDS incorrectly identifies normal activity

as being malicious. False negatives occur when IDS fails to detect malicious activity. It is

also susceptible to protocol-based attacks. This means that encrypted packets are not

processed by IDS (Chowdhary et al., 2014).

32

2.3.2 Weaknesses of the Intrusion Prevention System

IDS face difficulties when transferred from traditional networks to cloud-based

designs. Issues such as those with their deployment locations and the separation of legitimate

traffic from malicious traffic pose challenges with their implementation. IPS does not scale to

deal with cloud requirements and does not satisfy the requirements of high-speed networks.

IPS requires flow-based, decision making. It is difficult to identify and recognize the analysis

of packets in real time traffic. IPS generates a high false alarm rate or positive alarms. There

is no uniform standard or metric for evaluating IDS, which can often lead to misleading

information as to their effectiveness. Inability to correlate incoming alerts, and it is very

difficult to identify internal intrusion attacks given that correctly configuring the systems and

implementing organizational policies is a difficult task (Vijayarahi, & Sylviaa, 2015).

2.3.3 Weaknesses of Firewall

According to Hock and Kortis (2015), challenges of the firewall are as follows; use of

a set of rules that are manually configured. It cannot react to a network attack nor can it

initiate effective counter-measures. Most firewalls do not analyze the contents of the data

packets that make up network traffic. It cannot prevent attacks coming from Intranet, this

means that it cannot fend off internal attacks. Filtering rules of the firewall cannot prevent

attack coming from the application layer. Firewall produces many false positive alarms, it has

limited prevention and firewall is created to prevent intrusion from traffics that only pass

through it. A firewall makes communication insecure. If an organization allows

communication from outside the network it has no ability to be able to scan and prevent the

virus.

According to Jansen and Tanner (2014) aside from schemes like the above, the main

measures employed today to counter malware attacks are the local installation of scanning

33

tools like antivirus and spyware tools and local installation of personal desktop firewalls.

These have a number of drawbacks. For example, the mechanisms are static: firewalls, for

example, rely on decisions of users to create static rules allowing certain executable to access

certain network ports and destinations. They also demand user expertise for previous

connection requests from local software, the user of the machine is prompted to deny or allow

the access request. Very often the user has insufficient expertise to make these decisions,

leading to ‗holes‘ in the firewall through inappropriate choices of the user. There is the

additional difficulty of administration and maintenance: how to place the software on every

desktop and how to keep it up-to-date with signatures for example. Further, an operation is

mostly based on signatures for known-bad software, so systems are not ready for day zero

exploits for which signatures are not yet available. In addition, the placement of these

security mechanisms on the local machine allows malware, after a successful compromise, to

disable the security mechanisms or hide from them.

Bensefia and Ghoualmi (2011) introduced a contribution consists of designing and

developing an intelligent system in order to help the security administrator to exploit, manage

and analyze the firewall log files content. The firewall log files trace all incoming and

outgoing events in a network. Their content can include details about network penetration

attempts and attacks. Eronen and Zitting (2001) presented a tool that helps administrators in

analyzing firewall rules. Their presented tool was based on constraint logic programming

(CLP) that allows the user to write higher-level operations for detecting common

configuration mistakes. One of the weaknesses of packet filtering is that it pretty much trusts

that the packets themselves are telling the truth when they say who they are from and where

they are going. The firewall also has a weakness of packet filtering, it examines each packet

in isolation without considering what packets have gone through the firewall before and what

packets may follow. Although network traffic contains huge number of events and a lot of

34

useful information, most of the current packets filtering techniques exploit the characteristics

of filtering rules but they do not consider the traffic behavior in their optimization schemes

(Nurika et al., 2012).

The firewall assigns an address to the malicious device and makes the device think it

was on a valid host, but would not transfer the communication further up the chain to the

host. Stateless Firewall checks all incoming packets individually with the ruleset (Shah,

2015). It does not track the connection nor keeps the state of the traversed packets, rather

simply check each packet with Firewall rules and identifies whether the packet is allowed to

pass by or not. It assumes that the information within a packet is trustworthy. Hence, one

possible breach could be: a TCP SYN-ACK packet can be passed by the Firewall before the

Firewall has seen a TCP SYN packet.

2.4 Demonstrate the weaknesses of existing detection tools on policy violation in the

cloud

According to Lo et al., (2010) proposed and implemented IDS that worked in a

supportive way to oppose the DoS and DDoS attacks. It consisted of four components. The

first component performed intrusion detection by collecting and analyzing the network

packets. The second component immediately drops the packets and checks whether it is

correspondence with the block table rules or not, if packets having no autonomic element

manager, autonomic coordinator, and correspondence to these rules are forwarded to the alert

clustering module which generates alert for the suspicious packet. The third component

blocks the suspicious packets and sends alerts to other IDSs. The fourth component collects

alerts and makes a decision about the packet. They could protect the system from a single

point of failure attack by deploying the above-proposed IDS. Though, it cannot detect

unknown attacks since it uses signature-based detection techniques to detect intrusions.

35

Vieira et al. (2010), have tested the deployment of IDS at different positions in the

cloud to detect DoS attacks. The authors have well-thought-out two scenarios to calculate the

IDS performance based on its position in the cloud. Calculation results have shown that

detection of DoS attacks using a single IDS instance located close to the Cloud Controller

which will significantly increase the load on Cloud Controller. On the other hand,

deployment of split instances of IDS at each virtual machine affects only the CPU load of the

attacked VM and there is no significant impact on other VMs. The proposed technique is

signature based so unable to detect unknown attacks.

According to Golshan and Binder (2016), demonstration detection examination of

hard-drive and memory has been a widely used technique to detect the host of malware

instances. They proposed a new demonstration detection approach based on a portable

executable (PE) format file relationship. This approach has been implemented and validated

in HADOOP platform. This approach provided a higher detection rate as well as lower false

positive rate. The main drawback of this approach is that its success is based on three

assumptions. Most legitimate programs and malware files are in PE format and lie within a

windows platform. The number of legitimate files is greater than that of malware files in the

user‘s computer and creating PE format files occasionally happens in a user‘s computer.

Nevertheless, an attacker could exploit any vulnerability in the cloud to attack without

following any of these pre-requisites. The authors failed to discuss the consequences of the

absence of these pre-requisites such as how efficient this approach would be if one or more of

the assumptions are not fulfilled and how much damage the attacker could cause to system or

data in absence of these assumptions.

Another model to counter the attack is called ‗CloudAV‘ is provided by Zhang et al.,

(2014). They gave two main features that make it more efficient, accurate and fast as a

malware detection system. One of the features is antivirus as a network service it is a

36

detection capability by host-based antivirus. It is more efficient and effective as a cloud-

network-service. Each host runs a lightweight Process to detect new files and then sends them

to network service for quarantine and for further analysis rather than running complex

analysis software on each end-host. The second feature is the N-version protection. It is

malicious software identification determined by multiple heterogonous detection engines

similar to the idea of N-version programming. The notion of N-version protection has been

provided in this solution so that the malware detection system should leverage the detection

capabilities of multiple heterogeneous detection engines to determine malicious and

unwanted files more effectively (Xu et al., 2016).

Nevertheless, the number of false positives encountered during normal operations

increase compared to 1-version engines. To manage the false positives, the administrator has

to set a trade-off between coverage a single detector is enough to mark a file as malicious and

false positives a consensus of a number of detectors is required to mark a file as malicious.

The authors concluded that the efficiency of CloudAV through validation in a cloud

environment is possible. CloudAV also provides better detection of malicious software and

enhanced forensics capabilities.

According to Hatem and El-Khouly (2014) new threat detection through retrospective

detection, the approach can improve deployment ability and management. The validation

experiment proves that CloudAV provides 35% better detection coverage against threats

compared to single antivirus engines and 98% detection coverage of an entire data set of a

cloud. Nonetheless, cloud-based security solutions generally suffer from three problems

namely security coverage, scalability, and privacy. As malware can be embedded in a large

number of file types, attackers may be able to bypass cloud solutions as they are limited to

few file types and hence degrade the detection coverage. Additionally, exporting all binaries

37

or PDF files to the cloud for investigation does not scale and may create a single point of

failure by flooding the cloud with benign binaries.

According to Mazzariello et al. (2010), IDS works at the middleware layer and it can

detect specific intrusions by using a combination of knowledge and behavior based

techniques. They have projected IDS for Grid and Cloud Computing (GCCIDS). In this

system, each node identifies the intrusion and generates an alert to another node present in the

system since the system works in a cooperative manner. The authors have proposed the

behavior-based system by measuring false positives and false negatives and concluded that

false negatives are always more than false positives when a similar quantity of data is used as

input. On the other hand, they have evaluated the knowledge-based system by using audit

data from the system log and communication system and concluded that it is possible to

analyze the traffic in real-time if an inadequate number of rules are used for comparison. The

authors have not specified implementation details.

Modi et al. (2012) have proposed and implemented a Network intrusion detection

system (NIDS) which uses Snort to detect known attacks and Bayesian classifier to detect

unknown attacks. NIDS deployed in all servers work in a collaborative approach by

generating alerts into the knowledge base and thus making detection of unknown attacks

easier. In the given technique, signature-based detection is followed by anomaly-based

detection, since it detects just unknown attacks. Conversely, the detection rate is increased by

sending alert to other NIDS deployed in the cloud.

According to Riaz et al. (2017) grid and Cloud Computing Intrusion Detection

System (GCCIDS), this is designed to cover the attacks that network and host-based systems

cannot detect. Their proposed method uses the integration of knowledge and behavior

analysis to detect specific intrusions. Conversely, the proposed prototype could not discover

38

new types of attacks or create an attack database, which must be considered during

implementing IDS.

According to Hu et al. (2014), enforcing a conflict-free security policy in cloud

environments based on SDN has been studied in Flowguard. These works deal effectively

with direct conflicts by rejecting the policy and implementing role-based and signature-based

enforcement to ensure applications do not circumvent existing security policy. However, a

flow can be defined in multiple layers, where traditional policy checking approaches do not

consider; for example, indirect security violations, partial violations or cross-layer conflicts

cannot be handled. Additionally, they appear not to fully leverage the SDN paradigm that lets

flow rules do traffic shaping in addition to implementing accept/deny security policy.

Chang et al. (2013a) and Chang (2015) proposed their Cloud Computing Business

Model (CCBF), which has four major components and compiles a summary of successful

deliveries and case studies of Cloud Computing. However, there is no detailed information

from the design to implementation of service delivery. Due to this reason, the next phase of

work known as Cloud Computing Adoption Framework (CCAF) was developed (Chang et

al., 2013b; Ramachandran, & Chang, 2014). CCAF emphasizes more on the practical

implementation, service delivery and resolution of problems rather than presenting the

conceptual framework. Nevertheless, there is a lack of demonstrations on security, which is

an important aspect of Cloud Computing service to ensure all services are well protected.

Huang et al. (2013) presented a low reflection ratio mitigation system that consists of source

checking, counting, attack detection, turning test and question generation modules. This

system is designed to be implemented before the IaaS. This system considers the

computational efficiency and overheads in the implementation and their effect on legitimate

users. A blacklist, white list, block list and unknown are used to categories incoming packets

based on IP addresses; administrators using APIs maintain these. Such APIs open the system

39

to malicious manipulation from insiders. The system shows an operational degradation of

8.5% when monitoring traffic against a blacklist of 100,000 addresses.

The system proposed by Fujinoki (2013) addresses some of the limitations of overlay

networks in hiding the location of target servers with gateway routers. It protects clouds from

insider attacks and compromised user host machines. There is no need for migration of

network items to other hosts. The approach removes the need to monitor all network traffic

resulting in lower computational overhead. Each proxy node contains a Bloom filter, which is

a data structure that can efficiently test for the presence of certain values. When an attack

warning is issued, more user proxy machines are deployed with the number of users assigned

to each being halved until attackers are identified. Published simulation results are very

promising; nevertheless, real-world testing is needed to achieve realistic performance

measurements.

According to Bulajoul et al. (2015), a real network to present experiments that use a

Snort NIDPS was designed. Their experiments demonstrated the weaknesses of NIDPSes,

such as the inability to process multiple packets and propensity to drop packets in heavy

traffic and high-speed networks without analyzing them. They tested Snort‘s analysis

performance, gauging the number of packets sent, analyzed, dropped, filtered, injected, and

outstanding.

Jaiganesh et al. (2013) recommended a novel backpropagation model for intrusion

detection. This method makes training pair with a combination of input and equivalent targets

were generated and implemented into the network. Performance success can be measured by

a false alarm and detection rate. The detection rate was proven to be less than 80% for U2R,

R2L, DoS and Probe attacks. Nevertheless, the major issue of the method was found to be

inefficient to detect hidden attackers present in the system. Devikrishna and Ramakrishna

(2013) used MLP (Multi-Layer Perception) architecture for intrusion detection that detects

40

and classifies attacks into six types. MLP method was considered as a failure model due to

irrelevant output. In the present paper, we have tried to overcome this query and to establish a

better detection technique.

2.5 Develop a model to detect and identify policy violation in the real-time traffic

According to Gul and Hussain (2011), an efficient model that uses multithreading

technique for improving IDS performance within the Cloud computing environment to

handle a large number of data packet flows was suggested. The proposed multi-threaded

NIDS is based on three modules namely capture module, analysis module and reporting

module. The first one is responsible for capturing data packets and sending them to analysis

part which analyzes them efficiently through matching against a pre-defined set of rules and

distinguishes the bad packets to generate alerts

Finally, the reporting module can read alerts and immediately prepare an alert report.

Consequently, the proposed system can outperform the hybrid system of in terms of

preventing the attack from conducting any bad action through blocking the event and saving

that threat with the other signatures in order to be observed by Signature-Based Intrusion

Detection for next time so that it can be detected earlier (Alsafi et al., 2012).

In SDN IPS Xing et al. (2014) presented a Software Defined Network (SDN) based

Intrusion Prevention System solution. It is a full lifecycle solution including detection and

prevention in the cloud. A new IDPS architecture is proposed based on Snort-based IDS and

Open vSwitch (OVS). The authors have compared the SDN based IPS solution with the

traditional IPS approach from both mechanism analysis and evaluation.

According to Ferreira et al. (2017), a solution of monitoring data at runtime and

feeding it back into the service registry to adjust descriptions and make contract template

derivation as a more realistic process needs to be implemented. Emeakaroha et al., (2012)

41

introduced the detection SLA violation infrastructure (DeSVi), the narrative architecture for

monitoring and detecting SLA violations in cloud computing infrastructures. The main

components of the architecture are the automatic VM deployer, responsible for the allocation

of resources and for mapping of tasks, application deployer, responsible for the execution of

user applications, and LoM2HiS framework, which monitors the execution of the

applications and translates low-level metrics into high-level SLAs.

According to Hu et al. (2014), a comprehensive framework FLOW GUARD to

accommodate design requirements was proposed. FLOWGUARD addresses several

significant limitations in building SDN firewalls to facilitate accurate detection as well as the

flexible resolution of firewall policy violations in dynamic OpenFlow networks along with a

variety of toolkits for visualization, optimization, migration, and integration of SDN firewalls

as shown in figure 7. Flow packet violations can be handled by using the traditional technique

for firewall packet filtering. Conversely, it is challenging to deal with a flow policy violation,

since both firewall and flow policies support wildcard rules. Moreover, in an OpenFlow

network, the header fields of flow packets could be dynamically changed when the packets

traverse the network as shown in Figure 8. Thus, to support accurate violation detection and

enable network-wide access control, a firewall application needs to not only check violations

at the ingress switch of each flow but also track the flow path and then clearly identify both

the original source and final destination of each flow in the network.

42

Figure 7: FlowGuard framework (Hu et al., 2014)

According to Bleikertz et al. (2014), and infrastructure cloud consists of (virtualized)

computing, networking, and storage resources, which are configured through a management

host and its well-defined interface. The system model of this work is poised towards a

differential analysis based on change events issued by the management hosts when the

infrastructure is re-configured. In figure 7, the analysis system uses these change events to

continuously update a graph representation of the infrastructure, the Realization model,

which is used for subsequent analysis. As long as the management host issues the events

correctly, the model covers malicious adversaries, insiders, and externals alike.

Figure 8: Virtualized Computing (Bleikertz et al., 2014)

43

According to Jabez and Muthukumar (2015) to develop an IDS based on anomaly

detection model that would be precise, not easily cheated by small variations in patterns, low

in false alarms, adaptive and be of real time. The proposed system model was the intrusion

packets are received from the internet then SNORT is used to collect the datasets. Initially,

the features extracted from data packets then forwarded to our proposed IDS. Then, the

proposed IDS computes the distance between the extracted features and the trained model.

Here, the trained model consists of big datasets with distributed storage environment to

improve the performance of Intrusion Detection System. Thus, the outlier value is greater

than the specified threshold then it generates the false alarm.

According to Varadharajan and Tupakula (2014) system models involved cloud

service providers which included cloud system administrators, tenant administrators (or

operators) who manage the tenant virtual machines, and tenant users (or tenant‘s customers)

who use the applications and services running in the tenant virtual machines. Cloud providers

are entities such as Amazon EC2 and Microsoft Azure who have a stake in protecting their

reputations. The cloud system administrators are individuals from these corporations

entrusted with system tasks and maintaining cloud infrastructures, who will have access to

privileged domains. They assumed that as cloud providers have a stake in protecting their

reputations and resources, the adversaries from the cloud provider perspective are malicious

cloud system administrators. In determining the threat model, they needed to look at the

different types of attacks that are possible in such a configuration. The circle in Figure 9

showed the source of the attack and the arrowhead shows the target of the attack. They

identified three domains in our architecture that are relevant to the threat model. There is the

tenant domain comprising tenant administrators and tenant users. Each tenant has its own

tenant domain. There is the cloud system domain, which consists of cloud system

administrators and the VMM platform with its privileged domain and hardware. Then there is

44

the cloud cluster domain comprising cloud system domains that constitute the cloud

infrastructure.

Figure 9: Threat Model (Varadharajan, & Tupakula, 2014)

2.6 Cloud computing crimes

An attack can be anything that can harm a system or cloud network. In terms of

specific attacks, which can affect some Cloud services and resources, Patel (2013) listed the

possibility of flooding attacks, the user to root attacks, port scanning, backdoor attacks and

attacks on the VM or hypervisor. Examples of Cloud resources being used as a tool to

commit crimes include the use of the Amazon EC2 instance in 2009 as a command and

control server for Zeus botnet (Goodin, 2009). This resulted in the second-largest online data

breach in the U.S (Galante et al., 2011). Another example occurred in 2014 when Amazon

Web Service (AWS) account was hijacked and extra instances were launched to mine

Bitcoins (Rashid, 2014). Examples of the Cloud being the target of crime include the

Distributed Denial of Service (DDoS) attack on Bitbucket, a hosting service website (Noehr,

45

2011), while Sony‘s Play stations network and Microsoft‘s Xbox Live services suffered

DDoS attacks in 2014 (Paganini, 2014). In addition, Rack space, a Cloud computing service

provider suffered a DDoS attack on 21 December 2014, which lasted 12 hours (Martin,

2014). These examples show the susceptibility of the Cloud to crime and that there is,

therefore, a need for investigative strategies for a Cloud environment. The attacks can also

cause the policy violation by using affected machine to access the network. The most

common attacks that affect the cloud are as follows.

2.6.1 Virtual Machine Attacks

Attackers effectively control the virtual machines by compromising the hypervisor.

The most common attacks on the virtual layer are Xen – based Host system firewall and its

extensions and NOVA a micro hypervisor-based secure virtualization architecture that allows

hackers to manage host through the hypervisor. Attackers easily target the virtual machines to

access them by exploiting the zero-day vulnerabilities in virtual machines. This may damage

several websites based on a virtual server (Ibrahim et al., 2016).

The solution to prevent VM rollback attack is based on disabling the suspend and

resume functionalities of the hypervisor. The suspend/resume feature is powerful for

virtualization and disabling it will not provide a better solution. Another limitation of this

solution is the excessive user interaction with the cloud system. It requires end users to get

involved during VM booting, suspending and resuming. This means that the system needs to

ask for permission every time it reboots, migrates or suspends a VM, which makes it

inconvenient and impractical. In this solution, only the end user can tell whether a rollback is

malicious or not by auditing the log of VM activities. Although this solution has minimized

the user involvement compared to the Hyperwall, the changing infrastructure of cloud

46

computing still demands the autonomous working of VM operation with some user

involvement (Szefer, & Lee, 2012).

2.6.2 U2R (User to Root Attacks)

The attacker may hack the password to access a genuine user‘s account, which

enables him to obtain information about a system by exploiting vulnerabilities. This attack

violates the integrity of cloud-based systems. These attacks are exploitations in which the

hacker starts off on the system with a normal user account and attempts to abuse

vulnerabilities in the system in order to gain superuser privileges (Aljawarneh et al., 2018).

The proposed model for the detection of User to Root attacks. This model consists of three

Phases, in each phase, a set of activities have been carried out. In the first phase KDD CUP

99 data set is taken, from which the User-to-Root data set is created. User-to-Root data set

contains 52 samples with 41 attributes.

2.6.3 Insider Attacks

The attackers can be authorized users who try to obtain and misuse the rights that are

assigned to them or not assigned to them (Pandeeswari, & Kumar, 2016). An insider attack is

a malicious attack perpetrated on a network or computer system by a person with authorized

system access. Insiders that perform attacks have a distinct advantage over external attackers

because they have authorized system access and may be familiar with network architecture

and system policies/procedures. In addition, there may be less security against insider attacks

because many organizations focus on protection from external attacks. An insider attack is

also known as an insider threat. Insider attacks can affect all computer security elements and

range from stealing sensitive data to injecting Trojan viruses in a system or network. Insiders

also may affect system availability by overloading computer network storage or processing

capacity leading to system crashes. Internal intrusion detection systems (IDS) protect

47

organizations against insider attacks, but deploying such systems is not easy. Rules must be

established to ensure that employees (Khurana et al., 2014) do not trigger unintended attack

warnings.

2.6.4 Denial of Service (DOS) Attack

In cloud computing, the attackers may send a huge number of requests to access

virtual machines thus disabling their availability to valid users, which is called DoS attack.

For example, one can launch a DoS attack by just using the ping command. This will result in

sending the victim an overwhelming number of ping packets. If the attacker has access to

greater bandwidth than the victim does, this will easily and quickly overwhelm the victim

(Chowdhary et al., 2014). The attack targets the availability of cloud resources.

2.6.5 Port Scanning

Ports are like little doors on your system. Most packets leaving your machine come

out of a certain door. They are destined for another door on another system. Transport layer

protocols, including the Transmission Control Protocol (TCP), User Datagram Protocol and

the Stream Control Transmission Protocol, use ports, which, taken together with an IP

address, are used to identify the processes running on a networked host to which a packet is

sent. Transport layer protocols in the TCP/IP stack can use any of up to 65,535 different ports

to listen for and respond to requests from remote hosts (Gould, & Danforth, 2016).

A port scan attack, therefore, occurs when an attacker sends packets to your machine,

which can vary the destination port. The attacker can use this to find out what services you

are running and to get a pretty good idea of the operating system you have. Most internet-

facing systems get scanned every day, though as long as you harden your firewall and

minimize the services allowed through it, these attacks shouldn‘t worry you (Ahanger, 2014).

https://searchnetworking.techtarget.com/definition/SCTP
https://searchnetworking.techtarget.com/definition/Transport-layer

48

2.6.6 Backdoor Path Attacks

According to Gonzales et al. (2017), hackers continuously access infected machines

by exploiting passive attacks to compromise the confidentiality of user information. Hackers

can use a backdoor path to get control of infected resource launches a DDoS attack. This

attack targets the privacy and availability of cloud users. Backdoor Use in Targeted Attacks,‖

applications that allow for remote access to computers known as backdoors are often used for

targeted attacks. In these types of breaches, hackers leverage backdoor programs to access the

victim‘s network. The benefit of this attack vector is that the backdoor itself can help cyber

criminals break into the infrastructure without being discovered. Backdoors not only provide

a disguised point of entry for hackers but can also offer a number of strategies for the

intrusion. Trend Micro‘s report noted that these include:

2.6.7 User Spoofing

Spoofing attacks can occur in one of two ways. First, there is local spoofing a type of

attack carried out when the attacker and the victim are on the same subnet. Of the two types

of spoofing attacks, we‘ll discuss here, this is by far the easier. The attacker has the ability to

sniff traffic on the network, and thereby uncover key pieces of information needed to launch

the attack. While some of the techniques used to initiate this type of attack occur in the

transport layer, it is important to understand that attackers will corrupt the data stream, spoof

addresses, and attempt to inject sequence numbers into packets that will help them gain

control of the communication session. The second way in which this attack may be launched

is by means of blind spoofing. This is a much more sophisticated and advanced attack. When

launched in this manner, the attacker is not on the same local subnet. This means many of the

pieces of information that the attacker will need to be successful are not available. These key

parameters must be guessed. Most modern OS use random sequence numbers making this

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-backdoor-use-in-targeted-attacks.pdf
https://www.sciencedirect.com/topics/computer-science/subnet
https://www.sciencedirect.com/topics/social-sciences/ability
https://www.sciencedirect.com/topics/social-sciences/traffic
https://www.sciencedirect.com/topics/social-sciences/network
https://www.sciencedirect.com/topics/social-sciences/information
https://www.sciencedirect.com/topics/social-sciences/transport
https://www.sciencedirect.com/topics/social-sciences/rivers
https://www.sciencedirect.com/topics/social-sciences/blind

49

type of attack difficult to launch. While still possible to launch, the zenith of these attacks has

passed (Krombholz et al., 2015).

An attacker may send a forged ARP packet containing a false IP-to-MAC address

binding to a gateway or a host. The forged ARP packet sent from Host A deceives the

gateway into adding a false IP-to-MACaddress binding of Host B. After that, normal

communications between the gateway and Host B are interrupting (Maynard et al., 2014).

2.6.8 Penetration Attack

Penetration attacks contain all attacks, which give the unauthorized attacker the ability

to gain access to system resources, privileges, or data. One common way for this to happen is

by exploiting a software flaw. This attack would be considered a penetration attack. Being

able to arbitrarily execute code as root easily gives an attacker to whatever system resource

imaginable. In addition, this could allow the user to launch other types of attack on this

system or even attacks from other systems from the compromised system (Singhal, & Ou,

2017).

 According to Shah and Mehtre (2015) penetration test, also known as a pen test, is a

simulated cyber-attack against your computer system to check for exploitable vulnerabilities.

Pen testing can involve the attempted breaching of any number of application systems,

application protocol interfaces (APIs), frontend/backend servers to uncover vulnerabilities,

such as sanitized inputs that are susceptible to code injection attacks. Insights provided by the

penetration test can be used to fine-tune your WAF security policies and patch detected

vulnerabilities.

50

2.6.9 Malware Injection Attacks

Malware injection attack refers to a manipulated copy of the victim‘s service instance,

uploaded by an attacker to cloud so that some service requests to the victim‘s service are

processed within the malicious instance. An attacker can get access to the user‘s data through

the malware injection. The attacker actually exploits its privileged access capabilities in order

to attack that service security domain (Papp et al., 2015). The incidents of this attack include

credential information leakage, user private-data leakage and unauthorized access to cloud

resources. The challenge does not only lie in the failure to detect the malware injection attack

but also in the inability to determine the particular node on which the attacker has uploaded

the malicious instance (Kirat et al., 2014).

According to Liu and Chen (2010), retrospective detection examination of hard-drive

and memory has been a widely used technique to detect the host of malware instances. They

proposed a new retrospective detection approach based on a portable executable (PE) format

file relationship. This approach has been implemented and validated in HADOOP platform.

This approach provides a higher detection rate as well as lower false positive rate. The main

drawback of this approach is that its success is based on three assumptions. Most legitimate

programs and malware files are in PE format and lie within a windows platform. The number

of legitimate files is greater than that of malware files in the user‘s computer and

creating/writing/reading PE format files occasionally happen in a user‘s computer. However,

an attacker could exploit any vulnerability in the cloud to attack without following any of

these pre-requisites. The authors failed to discuss the consequences of the absence of these

pre-requisites such as how efficient this approach would be if one or more of the assumptions

are not fulfilled and how much damage the attacker could cause to system or data in absence

of these assumptions (Li, & Gaudiot, 2019).

51

2.6.10 Cross VM Side-Channel Attacks

VM side-channel attack is an access-driven attack in which an attacker VM alternates

execution with the victim VM and leverages the processor caches to infer the behavior of the

victim. It requires that the attacker resides on a different VM on the same physical hardware

as that of the victim‘s VM. Zhang et al., (2014) discussed a comprehensive example of how

to collect information from a target VM through cross VM side-channel attack. One incident

of side-channel attacks is the timing side channel attack which is based on measuring how

much time various computations take to perform. Successful modulation of this measured

time may lead to leakage of sensitive information about the owner of the computation or even

the cloud provider. Timing channels are especially hard to control and pervasive on clouds

due to massive parallelism. Moreover, timing side-channel attacks are hard to detect since

they do not leave trails or raise any alerts. Cloud customers may not have the authorization to

check for possible side channels from other cloud mates obviously due to privacy concerns.

2.6.11 Theft of Service Attacks

The Theft of Service attack utilizes vulnerabilities in the scheduler of some

hypervisors. The attack is realized when the hypervisor uses a scheduling mechanism, which

fails to detect and account for the Central Processing Unit (CPU) usage by poorly behaved

virtual machines. This failure may further allow malicious customers to obtain cloud services

at the expense of others. This attack is more relevant in the public clouds where customers

are charged by the amount of time their VM is running rather than by the amount of CPU

time used. Since the Virtual Machine Manager (hypervisor) schedules and manages virtual

machines, vulnerabilities in the hypervisor scheduler may result in inaccurate and unfair

scheduling. These vulnerabilities mainly result from the use of periodic sampling or low-

52

precision clock to measure CPU usage: like a train passenger hiding whenever ticket-

checkers come for tickets (Khalil et al., 2014).

In the theft of Service attack, the hacker ensures that its process is never scheduled

when a scheduling tick occurs. The common incidents of this attack include using cloud-

computing services for a long period while keeping it hidden from the vendor and using

cloud computing resources storage system or OS platform for a long period without

representing it in a billing cycle. A countermeasure to this attack has been provided by

modifying the schedule to prevent the attack without sacrificing efficiency, fairness or I/O

responsiveness. These modifications do not affect the basic credit and priority boosting

mechanisms. The modified schedules are the exact scheduler; uniform scheduler; passion

scheduler and Bernoulli scheduler. The main differences among these schedules are in the

scheduling and monitoring policies and in time-interval calculations. The experiment

conducted by Shea et al., (2014) found out that modified schedulers provide accurate and fair

scheduling. The modifications in hypervisor are shown to be beneficial, as compared to Xen

hypervisor currently running in Amazon Elastic Compute Cloud EC2.

Kadayiruppu (2014) states that using a new instance of cloud-to-user surface in the

victim machine monitors the scheduling of parallel instances suggested another theoretical

countermeasure. Then, the outputs of both the attacker and the legitimate instances are

compared. A significant difference in results is reported to the responsible authorities as an

attack. This solution has not been validated or verified by authors and does not provide any

guarantee for a beneficial result. There are other solutions provided for hypervisor scheduling

but they are only limited to improving other aspects of virtualized I/O performance and VM

security such as CPU-bound issues. These studies do not examine scheduling fairness and

accuracy in the presence of attackers, which is the backbone for the theft-of-Service attack

(Dall, & Nieh, 2014).

53

2.7 Review of Models Developed

 Several studies have been conducted previously that aimed to integrate IT functions of

Public and private cloud computing. Most papers discussed private cloud computing, public

cloud computing, and hybrid. According to Vaquero (2011), there is effectiveness when

using services cloud such as IaaS and PaaS in educational fields, especially in teaching

advanced Computer Science courses. The Blue Sky cloud framework was presented by Goyal

(2014) to implement a cloud that supports scalable and cost-efficient for the E-learning

system for basic education in China.

According to Sodhi and Prabhakar (2011), pure autonomous system architecture

based on IaaS where control of cluster nodes is fully autonomous was presented. This model

uses real-time information from cluster nodes and decentralizes the policy management from

the master node to other working nodes. It has several main components namely cloud

controller, a gateway for clients into cloud, which determines the suitable node to run VM

that satisfies client‘s needs, Cloud agent an intelligent software component that responds to

the queries of the cloud controller regarding the availability of VM configuration for a

specific lease duration. It also contains VM foundry, VM image repository interface

dedicated to answering queries for particular VM configurations and it creates the one-time-

URLs for the VM image. The cloud agent is further based on several components including

request handler, VM manager, policy manager, capability manager, and data store.

The key point, which differentiates this system from other IaaS based systems, is that

it consists of decentralized policy management rather than based on master-slave relationship

architecture that provides a bottleneck issue. If a problem occurs in the master, it may cause

the system to function abnormally or even to shut down. This issue has been avoided through

the decentralization of policies to other nodes. Workload distribution mechanisms for IaaS

are static. Decentralization needs to be autonomous, due to rapid change in cloud

54

infrastructure. Decentralization of policy management among different nodes will increase

reliability and security (Sodhi, & Prabhakar, 2011).

Bursztein et al. (2011), worked out a systematic study of existing visual CAPTCHAs

based on distorted characters that are augmented with anti-segmentation techniques.

Applying a systematic evaluation methodology to 15 current CAPTCHA schemes from

popular web sites, they found that 13 are vulnerable to automated attacks. They tested the

efficiency of their tool Decaptcha against real CAPTCHAs. To achieve such a high success

rate they developed the first successful attacks on CAPTCHAS that use collapsed characters

(eBay and Baidu). Only Google and ReCAPTCHA resisted the attack attempts, and they

reached some informative understanding of why they could not break them. Because of

DeCAPTCHA genericity, they were able to break 7 of these 15 schemes without writing a

new algorithm. The result of the analysis shows that the state-of-the-art anti segmentation

techniques, state of the art anti-recognition techniques, and CAPTCHAS used by the most

popular websites were evaluated. The limitation with this work is that because some features

that are ineffective against automated attacks but counterproductive for humans are used. It

makes it difficult to be able to break all the schemes. More so, some anti-segmentation

techniques are not used.

Chaware (2011) proposed a secured system for banking applications using honeypots

and IDS. The honeypot used in this system is the low interaction and high interaction

honeypot. The system is implemented in such a way that the users or attackers will either

access the network via the Internet or direct. Within a LAN, IDS with honeypot and a

centralized server with database layers are being connected. Once the user gets access to the

network, all its interactions low or high will be monitored by the IDS and make a log file for

that user. IDS will decide to make a user as blacklisted or not, also the server‘s data will be

checked for integrity and identify the source of the user. Database layers will also be checked

55

for integrity by the system. The proposed banking system divides the internal database into

three layers as a) public database (b) main Database and (c) dummy database. Their work

revealed that Honeypots have the ability to catch new hacker toolkits and scripts, and are able

to reduce the effectiveness of these tools in the wild by allowing security practitioners the

capability to analyze these new tools. The limitation to this system is first, in their

implementation, they did not include the latest rules for virus and worm detection. More so,

the protocols have not been emulated.

Linora and Barathy (2014) proposed an intrusion detection system that depends on the

honey pot. They built the models of normal behavior for multitier web applications

considering both front-end requests and backend database queries. It provides a container-

based IDS with multiple input streams to produce the alerts and can identify a large number

of attacks with a minimal false positive rate. This achieves better characterization of the

system for anomaly detection and it is more effective for both the static and dynamic web

service. The result of the work shows their approach is feasible and effective in reducing both

false positives and false negatives. The only problem associated with the work is that IDS

works on the assumption for abnormal behavior. The IDS did not indicate the mechanism it

will employ for detecting whether it is malicious activities or not.

Dhopte and Chaudhari (2014) proposed Genetic Algorithm Intrusion Detection

System (GAIDS), which consists of two phases; Preprocessing and learning phase. The

model is an algorithm that was used for detecting four major attacks Denial of Service DOS,

User to the root (U2R), Remote to Local (R2L) and probe data set. The result of the

algorithm provides a high rate of the rule set for detecting different types of attacks. Their

system is more flexible for usage in different application areas with proper attack taxonomy.

The use of Genetic algorithm with IDS gives a good result, but one limitation is that it was

56

not able to handle the sharp boundary problems. For increasing accuracy for intrusion

detection combination of fuzzy data mining with GA will be more powerful.

Ogweno et al. (2014) proposed the design and developed an Intrusion Detection

System. They also designed a port scanner to determine potential threats and mitigation

techniques to withstand these attacks. Implement the system on a host and Run and test the

designed IDS. In the project, they set up to develop a Honey Pot IDS System. It makes it easy

to listen on a range of ports and emulate a network protocol to track and identify any

individuals trying to connect to your system. The IDS will use the following design

approaches: Event correlation, Log analysis, Alerting, and policy enforcement. The result of

their work attempted to identify unauthorized use, misuse, and abuse of computer systems.

The limitation to their work is that it cannot presently contact (raise an alarm) an individual

away from his/her PC and there is a need for user sanitization.

Kondra et al. (2016) proposed a new approach which uses the virtualization technique

to overcome the existing security problem, it overcomes the limitation of honeypots from

single network detection to network across the organization and improves the existing

security design to waste the attackers‘ time as much as possible to get the best useful

information. The objective of the work was to analyze the performance of different honeypots

based on intrusion detection systems and get the best possible data about the attack and

relevant information. When honeypots were implemented, the log file was generated. With

the help of the data gathered, it was found that most of the attacks were on protocols, which

are based on TCP/IP. HTTP port was one of the most vulnerable ports. Another vulnerable

port found was FTP port. It was also found that the number of vulnerabilities increased when

this port was opened. The limitation identified is that real-time detection and prevention

system to minimize the attack and sources was not achieved.

57

Muthurajkumar et al. (2013), introduced an intrusion detection model that used a combination

of fuzzy SVM and feature selection algorithms to produce high detection rates and minimal

false positives. Vieira et al. (2009) proposed a grid and cloud computing intrusion detection

system (GCCIDS) that combats attacks by using both signature-based and anomaly-based

techniques to detect intrusions. In order to train the system, the authors employed neural

network classification algorithms, and the resulting system boasted low processing overhead

and satisfactory performance for real-time implementation. Singh et al. (2014), implemented

a forest for peer-to-peer botnet detection that proved adept at classifying malicious traffic on

a cluster, with low false positive rates and considerable precision and recall.

Malav et al. (2016), proposed a system, which combined specific features and

services of IDS, IPS, and Honeypot. Because various exploits were being used to

compromise the network, these exploits are capable of breaking into any secured networks. In

order to increase the efficiency of network security, they introduce Honeypot. Honeypot

detects attacks with the help of IDS; trap and deflect those packets sent by attackers. The

result of their work indicates that the system handles multiple clients using the concept of

honeypot. An intrusion detection system (IDS) monitors the whole network and looks for the

intrusion. When an intrusion occurs, the honeypot is activated. This activated honeypot

diverts the traffic to dummy/virtual servers and backtracks the source (IP address) to the

origin of that attack. The drawback of the system is that since it supports multiple clients

including an attacker the system can easily be compromised.

Yesugade et al. (2016), proposed a combination of the features, functions, and

methodology of IDS, IPS, and Honey pot. This is to make IDS more effective, accurate and

responsive. Honeypot, IDS, and IPS are eventually deployed on the gateway for analyzing

incoming network traffic. The main server will be connected to an Internet Service Provider

(ISP) through the external router. All incoming packets from the external network will be

58

first directed to the mirror server Honeypot to capture the logs. The result of their work

shows that the proposed system is more stable and precise on the operating system platform.

The system has introduced a sophisticated and interactive user-friendly interface to configure

and monitor the software and also to analyze and log the behavior of the intruder and

intruding events. The only drawback of the proposed system in its detection module did not

include how the IDS should be capable of detecting intrusion by spyware since it is evident

that CAPTCHA on the IPS can be broken by spyware.

Ashwini et al. (2017) proposed the implementation of middle interaction production

honeypot. Their main goal is to secure the server-side using honeypot from the attackers. The

result of the work indicates that Clients can communicate to the servers through the honeypot

only. The client has the fake IP address of the honeypot and not the servers. If the client is a

genuine client then its request goes to a honeypot. Honeypot changes its IP address and

forwards the request to the original server. After that, the server gives a response to a

honeypot. Again, honeypot changes its IP address and sends a response to the client. If the

client is a fake client, the attacker will be tracked, located, identified and saves information

about attackers at the honeypot. Though it is an attacker it gives a response to make them

fool. In all these scenarios, security is maintained. The limitation here is that if no attacker

comes in, the honeypot system becomes useless. The need for other established security tools

such as IDS and IPS to be integrated with the honeypot becomes imperative.

An architecture based on the hybrid cloud model, which uses both the public and

private clouds named as university Ucloud. It consists of two main parts the Cloud

Management System and the Hybrid Cloud. The cloud management system included the

following components, security management, performance monitoring, scheduler, resource

allocator. Sqalli et al., (2012) proposed Ucloud architecture that is simulated using CloudSim.

The evaluation of this architecture in terms of improvement on productivity in the university

59

is performed for two separate scenarios. In the first one, the number of tasks is kept constant;

and in the second, the number of tasks is changed. The results obtained are encouraging and

support the use of a hybrid cloud solution for a university. Nevertheless, the proposed

architecture in this research targets private cloud-only. The public cloud is used only to get a

better performance or when the load is too high for the private cloud, therefore not used all

the time. The results show that high performance can be obtained while keeping the cost low

as shown in Figure 10. However, the challenges of public cloud security, confidentiality,

privacy were not addressed on this Ucloud architecture.

Figure 10: Ucloud Architecture (Sqalli et al., 2012)

2.8 Experimental Model on Curbing the Weaknesses of IDS and Firewall on Policy

Violation in Cloud

According to Souley and Abubakar (2018), CAPTCHA is a tool commonly used in

IPS, to prevent machine intruders (bots) from intruding into a system, however, in this

research work, CAPTCHA was used as IDS. The technique to be used is cognizance of the

fact that there are software intruders that can read CAPTCHA and attempt to infiltrate it and

intrude into the system. CAPTCHAs with weak design pattern and fixed length with varying

60

colors on the text was employed for use in web-based system acting like IPS while in real

sense it is an IDS that will attempt to lewd software intruders using machine learning-based

attack to successfully read the text-based CAPTCHA and infiltrates the system. Likewise,

software intruders using unwitting human labor can easily read the CAPTCHAs and

infiltrates the system as well. The CAPTCHA character is to not only be read and re-type

back to the system, but it is also to be read, understand and abide by. For instance, one of

such CAPTCHA may be displayed as ―DO NOT TYPE ANYTHING IN THE TEXTBOX

BELOW‖. A wise human will understand that the textbox should be left empty, while a

software intruder that successfully reads the words would just rush and type ―DO NOT TYPE

ANYTHING IN THE TEXTBOX BELOW‖ in the textbox or something similar to that

sentence. As soon as anything is typed in the provided textbox, the system quickly detects

that an intrusion has taken place and the intruder is quickly redirected to the honeypot model

for post-intrusion activities. Figure 11 illustrates the IDS using CAPTCHA as a trap.

Figure 11: IDS using CAPTCHA as a trap (Souley, & Abubakar, 2018)

Recent cloud-based intrusion detection techniques have predominantly employed the

MapReduce model, an abstract programming model that processes large datasets on clusters

of computers. MapReduce is composed of two steps; map and reduce. In the MapReduce

model, a large dataset is split and each split sent to a node, also known as a mapper, where

each split is independently processed. Mapper results are then shuffled, sorted, and passed to

reducers that digest and prepare the results (Fontugne et al., 2014).

61

A possible implementation of MapReduce for a cloud-based intrusion detection technique is

inherently simple. The map step examines each split for traffic anomalies, and the reduce step

combines them, packages them, and presents the overall report. Many researchers‘ intrusion

detection techniques follow this general approach (Kumar, & Hanumanthappa, 2013). While

particulars change, MapReduce remains a foundational tool throughout the most recent

research on cloud-based intrusion detection analysis.

2.9 Cloud Security Policy

Cloud policies are the guidelines under which organizations operate in the cloud. The

overall cloud computing security strategy is in turn supported by policies, which should

clearly explain the necessary compliance and regulatory needs to keep the online cloud

environment safe. These policies are documented in every aspect of cloud security, these

include; Scope as the specific cloud environments and services that are supposed to be

covered, Compliance as the expectations of cloud security in meeting federal, end-users,

businesses, and other regulatory requirements. Accountability, which includes the areas and

people, is responsible for ensuring a safe cloud-computing environment. Deployment is a

high-level view of how cloud security was maintained. Identity and access management,

which include who has access to specific information and how identity is authenticated and

authorized. Confidentiality and sensitivity is an objective analysis of the confidentiality of

specific data sets, applications, and other cloud elements. Acceptable use is the standards that

you expect end-users, developers, and other authorized users to abide by and lastly Breach is

what happens in the event of a breach of security or policy (Kalaiprasath et al., 2017).

Cloud security policy ensures that the provision of a cloud service in accordance with the

business and security requirements and relevant laws and regulations of ISO 27001(Council-

CSCC, 2012).

https://bt.bomgar.com/solutions/compliance/
https://bt.bomgar.com/solutions/identity-access-management/

62

Table 2: Policy and Baseline Controls (Council-CSCC, 2012)

 Cloud computing security Each organization‗s cloud computing security policy

document:-SHALL be approved by senior management,

published and communicated to all employees and

relevant external parties either as part of the

organization's information security policy or as a separate

policy. The policy should set the goals and objectives

governing the cloud computing service.

 policy document

 Security program leadership

The senior management responsible for the cloud

Computing security policy SHALL be identified by

name, title, business phone, business address, and date

of designation. Changes to the senior management

MUST be documented within thirty (30) calendar days

of the effective date of the change.

 Review of the Security Policy

The security policy SHALL be reviewed at planned

intervals or if significant changes occur to ensure its

continuing suitability, adequacy, and effectiveness.

For example Architectural changes, service model

changes, service upgrades or changing the CSP.

CSP Hardening guides and

policies The organization SHALL assess the CSP

virtualization hardening guides and policies and

evaluate the party gap assessment against

virtualization security standards. This includes but not

limited to: Disable or remove all unnecessary interfaces,

ports, device, and services; Securely configure all

virtual network interfaces and storage areas; Establish

limits on VM resource usage; Ensure all operating

systems and applications running inside the virtual

machine is also hardened; Validate the integrity of the

cryptographic key-management operations; Harden

individual VM virtual hardware and containers

 Snap-Shots Security The organization SHALL ensure that the CSP has the

controls in place to guarantee that only authorized

snapshots are taken, and that these snapshots‗ level

of classification and storage location and encryption

is compatible with strength with the production

virtualization environment.

63

2.9.1 Security Goals for Cloud Computing

Cloud computing security includes identity and access management, data security,

privacy protection, and virtualization security. The network physical hardware and node

physical hardware form flexible computing, storage, and network bandwidth through multiple

layers of virtualization. The integrated virtual resource pools provide a resource sharing,

distribution, management, and control platform with the need to choose. Virtual technology

could construct a scalable service-oriented IT infrastructure providing cloud-computing

services (Shawish, & Salama, 2014).

For example, Amazon EC2 (elastic compute cloud) provides users with a large

number of virtual resources and completes the user tasks through these resources. Users

simply create a virtual machine instance according to their needs. Most experts believe that

the biggest difference between the cloud and traditional IT environment is its virtual

computing environment, which makes security problems become very tricky. Identity

Management and Data security issues could be solved through existing access control

policies, data encryption, and other traditional security means. The security of the cloud is not

inseparable from cloud monitoring technology (Saswade et al., 2016). Virtualized cloud

computing as the most important technology and the virtual cloud-computing environment is

a unique environment. Virtual machine monitoring (Zou et al., 2013) is a new area of

monitoring. Traditional security measures are difficult to fundamentally solve the problems.

So new security policies must be adopted (Fatema et al., 2014).

According to Zissis and Lekkas (2012), there are a lot of monitoring tools of

cloud; virtualization-based security monitoring is one of them. It uses isolation to monitor

and protect a specific system. Therefore, from the standpoint of technology of safety

monitoring, research work based virtualization security monitoring can be divided into two

categories: internal monitoring and external monitoring.

64

2.10 Hail marry Attack in Armitage

The Hail Marry Attack is an exploiting option available in Armitage, a Java-based

client for Metasploit. Essentially, running every potential exploit you think may work on the

system with a single click. Hail Mary feature is a smart DB-autopwn. It finds exploit relevant

to your targets, filters the exploit using known information and then sorts them into an

optimal order (Ridho, 2014).

2.11 Software Development Models

The software development life cycle or SDLC for short is a methodology for

designing, building, and maintaining information and industrial systems. So far, there exist

many SDLC models, such as the Waterfall model, which comprises five phases to be

completed sequentially in order to develop a software solution; another model called the

Spiral model, which is visualized as a process passing through some number of iterations.

Finally, the incremental model is any combination of both iterative design or iterative method

and incremental building model for software development. It has seven phases, and they are

as follows Planning, requirements, analysis, implementation, deployment, testing, and

evaluation (Larman, & Basili, 2003).

2.11.1 Waterfall Model

Considered as the traditional method of explaining the software development process

in software engineering, the waterfall model happens to clarify the process into a linear flow

with a specified sequence to let the users understand that further level is made progressive on

completion of the previous one. The Waterfall Model is the oldest and most well-known

SDLC model. This model is widely used in government projects and in many major

companies. The special feature of this model is its sequential steps. It goes down through the

http://fastandeasyhacking.com/

65

phases of requirements analysis, design, coding, testing, and maintenance. Moreover, it

ensures the design flaws before the development of a product.

This model works well for projects in which quality control is a major concern

because of its intensive documentation and planning (Alshamrani, & Bahattab, 2015). Stages

that construct this model are not overlapping stages, which means that the waterfall model

begins and ends one stage before starting the next one. The following steps give a brief

description of the waterfall processes.

Step 1 is a requirement, which is the description of system behavior to be developed.

Usually, it is the information provided by clients. Hence, it establishes the agreement between

the clients and the developers for the software specifications and features. In short,

requirements are gathered, analyzed and then proper documentation is prepared, which helps

further in the development process.‖In the High-Level design stage, the gathered information

from the previous phase is evaluated and proper implementation is formulated. It is the

process of planning and problem solving for a software solution. It deals with choosing the

appropriate algorithm design, software architecture design, database conceptual schema,

logical diagram design, and data structure definition. Furthermore, in the coding stage, the

whole requirements will be converted to the production environment. Additionally, the

testing stage phase deals with the real testing and checking of the software solutions that have

been developed to meet the original requirements. In addition, it is the phase where the bugs

and system glitches are found, fixed up, and refined. Lastly, the Maintenance stage after the

software is already released; it may need some modifications, improvements, error correction,

and refinement accordingly. Thus, this phase is the process of taking care of such concerns

(Munassar, & Govardhan, 2010).

66

2.11.2 Rapid Application Development

Rapid Application Development aimed at providing quick results. Rapid application

development is meant to give excellent development processes with the assistance of other

development approaches. It is created to take the maximum advantage from the development

software. Undoubtedly, it is designed to supplement the workability of the whole software

development procedure for highlighting the participation of an active user. Hiring for this

kind of development is not straight forward, because there are many factors which you need

to take into consideration.

http://searchsoftwarequality.techtarget.com/definition/rapid-application-development
http://searchsoftwarequality.techtarget.com/definition/rapid-application-development

67

Table 3: Strength and Weaknesses of SDLC Models (Alshamrani, & Bahattab, 2015)

Model

/feature Strengths Weaknesses When to Use

Waterfall i. Easy to understand i. All requirements must i. When quality is

 and implement. be known upfront more important

 ii. Widely used and ii. Inflexible. than cost or

 known. iii. Backing up to solve schedule

 iii. Define before design, mistakes are difficult, ii. When requirements

 and design before iv. once an application is are very well

 coding. in the testing stage, it known, clear and

 iv. Being a linear model, is very difficult to go fixed.

 It is very simple to back and change iii. The new version of

 implement. something that was existing

 v. Works well on not well- thought out

iv. The product is

needed.

 mature products and in the concept stage Porting an existing

 provides structure to v. A non-documentation v. product to a new

 inexperienced teams. deliverable only vi. platform

 vi. Minimizes planning vi. Produced at the final

 overhead phase.

 vii. Phases are processed vii. The client may not be

 and completed one at clear about what they

 a time. viii. Want and what is

 needed.

 ix. Customers may have

 little opportunity to

 x. Preview the system

 until it may be too

 late.

 xi. It is not a preferred

 model for complex

 and

 xii. Object-oriented

 projects.

 xiii. High amounts of risk

 and uncertainty, thus,

 small changes or

 errors that arise in

 xiv. the completed the

software may cause a

a lot of problems

Rapid i. Increased speed of i. Reduced Scalability,

Application development and ii. Reduced features

Development increased quality iii. Reduced scalability

 ii. RAD increases quality

occurs because of a

RAD

through the involvement

of the user in the analysis

68

and design stages.

iii. Advantages of

interoperability

iv. Extensibility

v.Portability

2.12 Gaps Identified from Previous Studies

Ford et al. (2016) developed an adaptive enterprise IDPS free open-source break-in

prevention software. Fail2ban is used to create a data collection agent. Here, all software

agents are interconnected to the central behavior analysis database service, collect and record

attack meta-information during prior attack attempts. The agents use both real-time and

previous data by applying integrating rules from the information analysis method into

intrusion prevention policies. However, this proposed system has a high false-positive rate.

According to Xiong (2014), present OpenFlow linked works like OpenNetMon and

OpenSafe both proposed the network monitoring service in a cloud environment to efficiently

collect the traffic usage statistics and detect malicious activities. However, they do not

propose a comprehensive solution for a cloud system. These works did not go beyond the

stage of detection and are not able to provide further analysis and countermeasures for any

attack. The ‗detecting and alerting‘ nature of monitoring solutions demand the human-in-the-

loop to inspect the generated security alerts and manually take actions, which cannot respond

to attacks in a prompt fashion.

According to Merlo et al. (2016), an adaptive mechanism that considers full account

prediction errors and residual traffic was proposed. This model was evaluated using a

network simulator and delays were calculated. The results indicated that only a minimal delay

is introduced, owing to the security analysis. However, this model lacks an ideal prediction

algorithm thus it produces packet delay for false prediction.

Yevdokymenko (2016) designed an adaptive method to detect and prevent active

attacks in telecommunication systems. Nevertheless, this approach was not capable to detect

https://www.sciencedirect.com/topics/engineering/analysis-method
https://www.sciencedirect.com/topics/engineering/simulators
https://www.sciencedirect.com/topics/engineering/packet-delay
https://www.sciencedirect.com/topics/engineering/adaptive-method
https://www.sciencedirect.com/topics/engineering/telecommunication

69

new attacks. Keshri et al. (2016) presented a Denial of Service (DoS) prevention technique

using a firewall and IDS based on a mining technique, which included data selection, data

preprocessing, transformation, and model selection and evaluation. They used the NSL-KDD

dataset, a superior version of the KDD99 cup dataset, for estimation. Though, the technique

could not detect intranet attacks.

Banerjee et al., (2018) proposed an Intrusion Filtration System (IFS), which provides

strong security and the capability to terminate the execution and distributing of corrupted

files. The system can be used offline and provides high throughput. In the approach, all files

available in the system are checked, in the sense that the system log is scanned and

information about all applications and software installed in the system is stored in the IFS

database. The normal way of updating of the database is designed to terminate the

dissemination of corrupted files. However, there is no real-world implementation of IFS.

Substantial research has been conducted in this field to defeat the current security

threats in cloud computing by implement IDS in the cloud. This is liable for monitoring the

utilization of resources for the virtual machine using data acquired from virtual machine

monitors (Edwards, & Dalton, 2014). Specifically, all monitoring operations are done outside

the virtual machines so the attacker cannot modify the system in cases of breach. However,

this method can detect normal activity as intrusion even if it is authorized activity.

Consequently, all these breaches should be taken into account during the implementations of

IDS within the cloud environment. On the other hand, many other researchers are interested

in distributing the IDS among the nodes of the grid within Cloud computing environment in

order to monitor each node and alert the other nodes when an attack occurs.

2.13 Conceptual Framework

The conceptual framework for this study was developed by incorporating key variables

derived from a review of the research literature on policy violations in the cloud. VM1 is a

https://www.sciencedirect.com/topics/engineering/data-mining-technique
https://www.sciencedirect.com/topics/engineering/data-preprocessing
https://www.sciencedirect.com/topics/engineering/data-preprocessing
https://www.sciencedirect.com/topics/engineering/throughput

70

virtual machine sign up to get the right privileges to access the model. After the login

module, the servers are initiated to allow the server to connect to the network. If the

connection takes too long then the VM is taken back to the login module. After connection to

the network, it then scans the network for any opened ports and blocks it. Otherwise, access

to the application is allowed. The application accessed is then checked for policy violations

that can be an intrusion. If no threats detected then the connection is established in the cloud,

otherwise, if the threats are detected then it is blocked before the session is created in the

cloud.

Figure 12: Conceptual Framework (Author, 2019)

71

CHAPTER THREE

RESEARCH DESIGN AND METHODOLOGY

3.1 Introduction

This chapter presents the research design, prototype development, and model

development. It further, entails model evaluation and ethical issues. While conducting this

research the focus here is on the development of artifacts with evidential value.

3.2 Research Design

The research design for this study was based on the proof of concept design. Proof of

concept method has the advantages of using multiple ways to explore a research problem.

Here the researcher used experimental design and a survey of literature for gathering

requirements and development of the model. In this research, objective one was achieved by

identifying the survey of the literature. Objective two demonstrated the weaknesses of the

survey of the literature. Objective three was achieved through Rapid Application

development. Rapid Application Development is a development model that prioritizes rapid

prototyping and quick feedback over long drawn out development and testing cycles. With

rapid application development, developers can make multiple iterations and updates to the

software rapidly without needing to start a development schedule from scratch each time. It

comprised four stages; Identification of weaknesses on IDS and firewall, Prototype

development, model development, and Model evaluation as depicted in figure 13. Objective

four was achieved through evaluation. In evaluation, there are criteria used, these are validity,

correctness, consistency, and completeness.

There are various artifacts that can potentially be recovered in the Cloud, including

VMs, browser artifacts, and network traffic and application logs. For this research, the

artifact considered is VMs. This is because they are the most common type of data that users

72

are able to create in Virtual box. Logs were also considered because they record information

on VM ownership and can, therefore, be used to identify the user who created them. Finally,

Virtual box, a Linux-based Cloud technology, was selected. This was because the basic

specification for a virtual box host is easy to meet in a laboratory environment, where it can

be set up for experimental purposes.

Figure 13: Rapid Application Development

3.3 Identification of the Weaknesses of IDS and Firewall

Every piece of software or application is built for a reason. Rapid Application

Development starts with identifying out what project is supposed to accomplish. The

researcher started by identifying the weaknesses of IDS, IPS, and firewall through conducting

a survey of the literature. In addition, the research expanded on different problems that have

been identified by the different researchers in related studies. Based on the literature review a

Identification of the

weaknesses

Prototype

Development Model Development Model Evaluation

Survey Rapid Prototype Functional

Decomposition

Objective based

Evaluation

73

set of requirements to be fulfilled by the POVIDE model was generated. The objective of the

survey of the literature was to identify different weaknesses of IDS, IPS, and firewall.

3.4 Prototype Development

A prototype is a set of rules and methods that describe the functionality, organization,

and implementation of the system. The prototype demonstrated various aspects of the product

such as interfaces or functionality. The prototype was used as a ‗proof of concept‘ in order to

aid in the development of a product or model where no clear approach is evident. The

prototype was used to look at the approach that would work and demonstrate to a user what

the intended model would look like, what it would do and how it would work. The rapid

application prototyping approach as depicted in figure 13 used in the translation of a model

for detecting IT infrastructure policy violations in the cloud environment.

74

Figure 14: Rapid Prototyping (Author, 2019)

Gathered requirements: The requirements were gathered after identifying the

weaknesses of IDS and firewall have been inferred from literature. Quick design: The model

processes described was translated into flow chart, class diagram, sequence diagram and

component diagram in chapter four. The file system was then designed based on the data that

was being stored.

Build prototype: A prototype was then built using Oracle virtual box, which is open-

source, and develop using Linux and windows, the file system was used as the database and

hosted on the virtual box as part of the development process. The POVIDE model was tested

then acquired to test functionality.

GATHERED

REQUIREMENT

Weaknesses of

IDS, IPS and

Firewall

QICK DESIGN

• Flowchart

• Class diagram

• Sequence

diagram

• Component

diagram

BUILT

PROTOTYPE

• Oracle Virtual

box

• Linux

• Windows

MODEL

DEVELOPMENT

Rapid Application

Development

MODEL

EVALUATION
• Validity

• Correctness

• Consistency

• Completeness

SECURE POVIDE

MODEL

Access control

POLICIES

Scanning policies

Penetration policies

75

Model Development: The system requirements were refined on an ongoing basis

using feedback from the model development, deployment, the survey collected and the

testing process. The model was developed using the Rapid Application Development process.

Model testing: Once the requirements are satisfied, a final version of the model was

completed and tested with real users in a pilot study.

POVIDE model: Feedback from this stage informed any further development and

refinement of the POVIDE security to make it more secure. The access control was one of the

main features to make the model secure. Policies: all the steps followed were guided by the

policies outline and put in place to enable the POVIDE model to be secure so that users

cannot violate the policies in place. The policies adhered to were scanning policies and

penetration policies.

In this stage, a functional model was built to demonstrate the weakness of IDS, IPS,

and firewall. This would help in curbing policy violations in the cloud. In terms of this

research, it intends to use three routers to represent the different networks. Router one was

ufw (uncomplicated firewall); Router two and three is Snort. It is hosted on Oracle VM, a

virtual box manager that requires the users to start Oracle VM. The external attacker uses the

Kali Linux pen test while internal attackers use Linux 2.6/3x/4x (64bits).

The first experiment demonstrated the weaknesses of the firewall. The research

demonstrated weaknesses of firewalls on rapid prototype development. Router one was the

firewall, there was a virtual machine, an external machine to represent outside attacker and an

internal attacker is also represented with one machine. All these machines were connected to

the firewall network. Here the network used Ubuntu (64bits). The external and internal

machines used Kali Linux 2.6/3x/4x (64bits). The other virtual machine used windows. The

next experiment was to test whether the machine represented as an external attacker could

76

access the Virtual Machine on the network and exploit it. It also tested whether the internal

attacker could scan the machines on the network.

The second experiment demonstrated the weaknesses of IDS and IPS on rapid

prototype development. A snort was considered for router two. There were virtual machines,

external machines and internal machines connected to the network. The experiment tested

false positive and false negative. Router2- IDS connects to the gitbash. The experiment

demonstrated that the virtual machine would access the website while gitbash that is

connected to snort would report it as a threat thus demonstrating to false positive alert. The

snort indicated that it required human intervention. Machines used are windows that are

connected to servers that use the Linux Ubuntu version.

3.5 POVIDE Model Development

POVIDE model uses an Oracle VM which is a free and open source server

virtualization and has a virtual box manager. The virtual box manager kernel is installed to

operate as a standalone server POVIDE model is made up Pf sense firewall and snort. The

model used a Red Hat Linux version that is connected to the Pf sense firewall and snort. The

model used a machine that is hypervisor (a VM monitor), which is a Type-1 or native

hypervisor that runs directly on the host‘s hardware, as opposed to a Type 2 hypervisor which

runs on the host‘s OS. The model hypervisor enables the running of multiple instances of an

OS on a single host as well as the multiple OS concurrently on a single host, on the same

hardware. The experiment indicated that VMs with the Windows OS installed are the most

widely used. POVIDE model can be deployed with either local or shared storage, where

‗shared‘ refers to the storage being shared in a pool of provided model hosts. However, both

were used in this research in order to understand their impact on artifact recovery. This means

that all VMs created will be stored on a local disk, which will allow easier access to them.

77

VMs stored on local storage cannot be migrated between hosts. The model intends to use a

shared network file system (NFS). Finally, the POVIDE model uses scanning and penetration

for testing. In scanning, an intense scanning was tested to see which ports are open. The

results of the scanning process were in two virtual machines. The second stage used the Hail

Mary attack that is Penetration stage. It was done by sending all the exploits from the external

attacker computer to the server computer through open ports. The rapid prototyping approach

depicted in figure 13 was used in the translation Policy Violation Detection model into a

functional prototype.

3.6 Network Diagram

One of the characteristics of Cloud computing is that it offers broad network access.

Cloud resources are available over a network that can be internal or external, local or the

Internet. As a Cloud technology, the POVIDE model needs a network interface before it can

be installed, but it does not need the Internet to work. While the basic network configuration

for the POVIDE model is a Local Area Network (LAN), a Personal Area Network (PAN)

works as well (Chaudhary et al., 2014). A PAN is considered a subset of a LAN and can

connect to other networks, including the Internet (Gilchrist, 2016). In terms of this research, a

LAN was used in order to provide a controlled environment where a management system

could be connected to the same network as the POVIDE model hosts. In the network

diagram, there is a router1, which is a firewall. The firewall network is connected to three

host computers. One is represented as an internal attacker. Then there is a different computer

that is not on the network to represent outside attackers (external attackers). The second and

third are the network that is IDS and IPS respectively. They are connected to three computers

each. The last network is the POVIDE model network. Different computers on the network

78

have different IP addresses and they are connected to different servers. The basic layout is

shown in figure 15.

Figure 15: Network Diagram (Author, 2019)

3.7 Population of the Study

The targeted populations were people working in ICT. Senior network administrators

of eight local universities based in Nakuru County and Safaricom did the testing. Network

administrators of local universities represented a larger group of different universities in

Kenya and Safaricom is one of the biggest organizations in Kenya. Senior network

administrators represented a sample group to come up with the different institutions and

organizations as they represented the universities and organizations in Kenya as shown in

table 4.

79

Table 4: Organizations and Institutions (Author, 2019)

Organizations/ Institutions Number of Network Administrators

Kabarak University 1

Egerton University 1

Jomo Kenyatta University of Agriculture and

Technology

1

Kenyatta University 1

St. Paul University 1

Mount Kenya University 1

University of Nairobi 1

Laikipia University 1

Safaricom 2

TOTAL 10

3.8 Data Analysis

For ten respondents that assessed the model, their responses were on a Likert scale.

They responded with ‗agree‘, disagree‘ and ‗neutral‘. In a contingency table, the counts in

each cell were assumed independent and had a Poisson distribution. A Poisson regression

analysis in Log Linear Model was carried out with the response variable being a count, the

distribution was Poisson and the link function was logarithm; i.e η = log(µ). The Data was

analyzed on the SAS package.

80

3.9 Reliability and Validity of the Instrument

Reliability is the measure of the degree to which research yields consistent results or

data after repeated trials. It is the degree of consistency used by research instruments or

procedures for demonstration. Poor reliability degrades the precision of a single measurement

and reduces the ability to track changes in measurement in a study (Mugenda and Mugenda

2003). A reliable instrument consistently produces the expected results when used more than

once to collect data from the same subjects randomly drawn from the population (Mugenda

and Mugenda 2003). The data obtained from a pilot study was used to estimate the reliability

of the instrument. Cronbach's alpha coefficient was used to estimate the reliability of the

evaluation forms. This is because all the three instruments were rated based on scales with a

range of scores. The instruments should return the Cronbach‘s reliability coefficient of at

least 0.7 in order to be accepted reliable. From the reliability analysis, it can be observed that

the value of Cronbach‘s alpha is 0.718, which is greater than 0.7 alpha. This means that the

scale conforms to internal reliability. This means that the researcher can use the tool for

evaluating expert opinion.

Table 5: Reliability and Validity Test Results

Cronbach's Alpha N of Items

.718 11

3.10 Model Evaluation

A formative evaluation was used. Senior network administrators who are experts on

the model tested the prototype. Usability testing was used to allow for a small number of

individuals to try the model out and give feedback.

The criteria used in the POVIDE model are validity, correctness, consistency, and

completeness. In terms of validity, it should be possible to show that the origin of the proof,

as well as the processes and circumstances that produced weaknesses, cannot easily be

81

disputed. In terms of correctness, the machine that created the proof should be in proper

working condition and the techniques that were used to process the weaknesses of existing

tools should be acceptable within the context of the study. Consistency requires justifiable

methods to obtain and process the proof. Finally, completeness demonstrates that the

maximum amount of tests required for the study to be collected and analyzed.

Table 6: Evaluation Procedure (Author, 2019)

Criteria Evaluation

Validity • The circumstance that produced Weaknesses

• Processes

• Authenticity

Correctness • Proper working condition

• Results generated should be the same

• Scanning and blocking of ports and files

• Accuracy

Consistency • Reliability

• Scanning the network

• Penetration to the network

Completeness • Audit log

• Performance of the model

• Short response time

3.11 Research Authorization

As per academic requirements in Kenya, a research permit and an introduction letter

were obtained from the National Commission for Science, Technology, Innovation, and

Communication (NACOSTI), before embarking on the model development. They are

presented in appendix III and IV.

3.12 Ethical Considerations

Ethics refers to acceptable behavior while conducting research. The researcher is

expected to avoid harm to anyone and to resolve any potential conflicts with integrity. As

such, ethics is concerned with ensuring that all research participants are protected and

82

promoting values such as trust, accountability, mutual respect, and fairness. Informed consent

is one of the means by which a participant‘s right to autonomy is protected. It is the ability

for self-determination in action according to a personal plan. Informed consent seeks to

incorporate the rights of autonomous individuals through self- determination.

The issue of confidentiality and anonymity is closely connected with the rights of

beneficence, respect for dignity and fidelity. Anonymity is protected when the subject‘s

identity cannot be linked with personal responses. If the researcher is not able to promise

anonymity, he has to address confidentiality, which is the management of private information

by the researcher in order to protect the subject‘s identity. The individuals who tested the

model their results were made confidential. It is necessary to have skills and knowledge for

the specific investigation to be carried out and be aware of the limits of personal competence

in research. Any lack of knowledge in the area under research must be clearly stated.

Inexperienced participants should work under qualified supervision, which has to be

reviewed by an ethics committee.

The participants were assured that their participation would be treated in confidence

and that data collected would be used for academic purposes only. The research did not

include any information deemed to threaten the security of participants. However, a limitation

of this is that the validity of the results might have been endangered.

83

CHAPTER FOUR

DATA ANALYSIS, PRESENTATION, AND DISCUSSIONS

4.1 Introduction

This chapter presents the interpretation of the findings of the study as set out in the

research methodology. It focuses on testing of the Model and elements of the data security

implementation for cloud computing in the organizations. The research data was gathered

exclusively through a survey of the literature review as the secondary research instrument.

The weaknesses of IDS and Firewall were designed in line with the research objectives of the

study. The purpose of the study was to develop Model to detect policy violation that is

resilient, secure and capable to curb policy violation. The model was developed using Rapid

application development and was taken through a proof of concept. It was then tested through

validity, correctness, consistency, and completeness.

4.2 Analysis

This section presents the results of experiments that were set up to verify the

weaknesses of the Firewall and IDS and to document the structure of the POVIDE model.

The purpose of the experiment was to find out how a good POVIDE model detects network

packets as normal or attack data. In this research, system experiments are performed by the

virtual machine host acting as an attacker by using several types of attacks against multiple

hosts that act as targets of attack, and then observed and analyzed the accuracy of the system

in recognizing this type of attack.

The results are presented as each stage of the experiment is reported. The system that

was set up for this set of experiments was composed of windows 10, Ubuntu 64 bit, 100 GB

HDD and 8 GB RAM. A partition editor was then installed using the Ubuntu Software

84

Centre. In one network it used at least One GB memory. Storage is a file system that has an

IDE controller and SATA.

There are two stages of testing. The first stage is intense scan all TCP ports. The

second stage is the Hail Mary attack. Research results, which are obtained after

demonstrating the weaknesses of the firewall and IDS and testing POVIDE Model, are

discussed in the next section.

4.3 Weaknesses of IDS and Firewall

The advent of the Internet, personal computers and computer networks are becoming

increasingly vulnerable to various kinds of attacks. The attacks are usually caused by a failure

to implement strong security policies and failure of using of security tool that is strong. The

various security tools that are available are Firewall, Intrusion Detection System and

Intrusion Prevention System. Each tool has its own features, strength, and weaknesses. Some

of the weaknesses are presented in table 7.

85

Table 7:Weaknesses of IDS, IPS, and Firewall (Author, 2019)

Detection and Prevention tools

Weaknesses

IDS/IPS

i.IDS is not an alternative to strong user identification and
authentication mechanism (Chowdhary et al.,2014).
ii. not a solution to all security concerns (Patel et al., 2013).

iii. Network Administrator is required to

examine the attack once it is detected and reported.

iv. False positives occur when IDS incorrectly identifies

normal activity as being malicious (Ford et al., 2016).

v. False negatives occur when IDS fails to detect

malicious activity (Latha, 2016)

Firewall

i. Firewalls use a set of laws that are physically

configured to differentiate legitimate traffic from non-
legitimate traffic (Hock, & Kortis, 2015).
ii. The firewall cannot counter a network attack nor can it

start effective counter-measures.

iii. Most firewalls do not evaluate the contents

of the data packets that build up network traffic (Eronen, &

Zitting, 2001).

iv. Firewalls cannot avert attacks coming

from Intranet (Bensefia, & Ghoualm, 2011).

v. Filtering rules of the firewall cannot prevent attack

coming from the application layer (Nurika et al., 2012)

4.3.1. Demonstration of the existing Weaknesses of the Firewall

In the firewall demonstration, the weaknesses that were tested are external and

internal attacks. The external attacker can hack on the computer on the network that has a

firewall and an internal computer can scan the network within and without the firewall

detection.

4.3.2. Experimental Setup for the Firewall

This section presents the result of the experiment that was undertaken in order to

verify the findings of the survey of the literature in relation to the firewall. This process was

then used to document firewall prevention tools.

The first experiment was carried out using three virtual machines as shown in figure

16. The firewall server was installed on the first system with 20GB HDD and 2GB RAM

86

using the default settings and static network settings. After the firewall was installed, the disk

was viewed in the Ubuntu partition of an analysis machine with the automatic mount option

enabled.

Figure 16: Firewall Setup (Author, 2019)

An internal attacker scans the entire network for an open network in order to attack.

External attacker hacks to the system on the network by sending an exploit in form of

download to VM1, and it manages to download the file thus enabling the external attacker

from getting a screenshot on what application VM1 is accessing.

4.3.3Algorithm for Demonstrating Weaknesses of Firewall

Step 1: Start

Step 2 User: User request to be signed up in the firewall server

Step 3 Actors: Verifies and add the user to the server

Step 4: Firewall server prompt user to enter username and password

a. The user enters username and password

External

Attacker

Host Network

VM1

Internal Attacker

Firewall

Server

87

b. Server checks username

If username does not exist in the file system it sends invalid username to go to step 2

Step 5 Short descriptions: Login verifies user access to firewall server based on username

and password pair that is entered by the user on the end-user device (personal computers or

iPad or smartphone)

Step 6 User initializes the devices used in the server at the same time

Step 7 Pre-condition: User is connected to the network (tested through IP address ping with

VM1, external attacker, internal attacker, and the firewall server)

Step 8 Invariant: If time out occurs, restarts the procedures go to step 4 above

Step 9:External attacker exploits VM1 by sending a download file

Step 10: VM1 downloads the file that contains exploit without knowing

If the external attacker can access and get a screenshot of what VM1 is accessing, then go to

step 12 else go to step 13

Step 11: Internal attacker to scan and access the entire network without exploit (scan target

192.168.3.0/24). If the internal attacker can scan and access the network then go to step 12

else go to step 13

Step 12 Weakness has been demonstrated

Step 13 Stop, connection established in cloud

4.3.4 Flowchart Diagram for Firewall

The main functionality of the firewall system is to receive an incoming and outgoing

connection from the network and virtual machines. The network administrator adds the

virtual machines on the network. The virtual machines accessing the network must have a

valid credential for signing in to the network. The device being used is initialized. In

response to a connection request initiating a connection between respective endpoints in the

88

network and virtual machines. First, the attacker from the outside network sends an exploit to

the virtual machines in terms of the file, the virtual machine then downloads the file or not.

The firewall server then performs analysis, if the firewall detects the exploit then the

connection is established in the cloud else the weakness has been demonstrated. On the other

hand, the VM2, which is, also an internal attacker scans the network for open ports in order to

attack. This is because the firewall cannot prevent attacks coming from Intranet. If it can scan

the network then it means the weakness has been demonstrated else, the connection is

established on the network.

89

Figure 17: Flowchart Diagram for Firewall (Author, 2019)

Network

Admin

Request signup

Enter Username and

password

No

External Attacker sends an exploit to user

Connects to the network

VM1 download

file?

VM2 scans

network

Weaknesses demonstrated

Yes No
Yes

No

Session created on

cloud

Stop

Start

Username

ok?

Initialize Device

Yes

Yes No

Time Out

90

4.3.5 Physical Volume Usage

This shows the type operating system used and the usage of the memory, processor

and hard disk. Figure 18 shows that the firewall below used Ubuntu version 18.04.2 LTS.

The hard disk used was 10 GB, the firewall requires 23 percent of the memory.

Figure 18: Physical Volume Usage (Author, 2019)

The ssh -l ruth -p 14607 localhost command was then used to securely operate network

services over an unsecured network. Next ruth@localhost‘ password was used to display the

metadata on any physical volume on the system, as shown in figure 18. The version for the

Ubuntu used is 18.04.2 LTS.

4.3.6. Login Credentials

Figure 19 shows the login image for the firewall. The first part shows an incorrect

user name and password. After using correct credentials it then shows the requirement of the

server for it to work properly. It gives the amount of memory to be used and the storage size.

It also shows the network address used and the IP address.

Physical Volume

Metadata

91

Figure 19: Login Credentials (Author, 2019)

4.3.6.1 Incorrect Logging

This is the logging credentials required for the user to successfully access the firewall

server. The user requires a valid username and password given to them by the network

administrator. Before login, the user needs to sign up through the network administrator.

Figure 20: Incorrect Logging (Author, 2019)

IP tables command was used to allow a system administrator to configure the tables

provided by the Linux kernel firewall and the rules it stores. ACCEPT was used to view the

contents of IP tables and it revealed that the metadata of the POSTROUTING was attached

after that of the IP tables was configured. IP tables are to initialize the device used to the

network. The correct credentials for username and password must be used. Figure 20 required

IP tables

92

the correct login in order to access the network using a valid username and password. The

valid user is ruth@server1 as shown in figure 20. It also shows the date and time of the last

login.

4.3.6.2 Connection to the Network

Figure 4.6 shows the connection established on the network. This means that different

virtual machines can communicate with each other and communicate to the server and

outside attacker‘s virtual machine.

Figure 21: Connection to the network (Author, 2019)

The commands in figure 21 show communication from different hosts on the network.

The results show that there is a communication between the machines with the firewall server

and an external attacker. The first connection was the window machine1 with an IP address

of 192.168.3.1 to communicate to the other virtual machine with an IP address of

Windows 7 pc1

External Attacker

Firewall Server

93

192.168.3.13. It shows very clearly that there are packets sent and received respectively. Ping

192.168.3.13 shows that the user pc can communicate with other virtual machines on the

network. The virtual machine with IP address of 192.168.3.13 is presumed by the researcher

to be the internal attacker.

The second connection was to communicate with the server. Here the researcher

disabled the firewall to test the connection to the server. The results showed that there was no

communication with the server. It indicated request timeout, to illustrate no connection. The

firewall was then enabled and the connection of IP address 192.168.3.3 was established. Ping

192.168.3.3 was then used to connect to the server.

The third connection was to communicate with the virtual machine outside the

network. This virtual machine is presumed to be an external attacker. This shows the virtual

machine can be communicated to the external attacker whose IP address is 192.168.171.5.

Figure 21 shows packets sent and received by the virtual machine to the external machine.

4.3.7 Penetration Stage of Firewall

Penetration was done by sending all the exploits from the attacker‘s computer to the

server computer through open ports. Open ports are obtained from the scanning stage. The

delivery exploits have the objective to do penetration. Penetration was conducted in order to

find the weakness of a firewall server. Exploits are delivered automatically adjusted by

Armitage.

4.3.7.1 Penetration of Exploit

The command below shows the exploit used by the external attacker with an IP

address of 192.168.171.5 to attack any virtual machine on the network. The external pc

launches an attack through an open port of 443. Metasploit has 1863 exploits that can be used

94

to attack a machine. The exploit launch dialog to allow the user to configure options for a

module and choose whether to use a reverse connect payload. If you launch an individual

client-side exploit, you have the option of customizing the payload that goes with it. In a

penetration test, it is usually easy to get someone to run your evil package. The hard part is to

get past network devices that limit outgoing traffic. For these situations, it helps to know

about meterpreter‘s payload communication options. There are payloads that speak HTTP,

HTTPS, and even communicate to IPv6 hosts. A payload handler is a server that runs in

Metasploit. Its job is to wait for a payload to connect to your Metasploit and establish a

session. The multi/handler output is used to create a handler that waits for the payload to

connect.

Figure 22: Penetration of Exploit (Author, 2019)

Metasploit‘s RPC daemon and the Armitage team server are not GUI programs. You

may run these over SSH. Penetration testers will find this feature invaluable. Imagine you are

working on a pen test and come across a system you do not know much about. You can reach

back to your company and ask your local expert to load Armitage and connect to the same

Metasploit instance. They immediately have access to your scan data and they can interact

with your existing sessions seamlessly. Some Metasploit modules require you to specify one

Metasploit

Exploit

Meterpreter

95

or more files. If a file option has next to it, then you may double-click that option name to

choose a local file to use. Metasploit shell sessions are automatically locked and unlocked

when in use. If another user is interacting with a shell, Armitage will warn you that it is in

use. Armitage will upload the chosen local file and set the option to its remote location for

you. Generally, Armitage moves files between you and the shared Metasploit server to create

the illusion that you are using Metasploit locally.

The Metasploit command was used as a hacking tool to access the pcs on the network.

Next, the exploit command was the processes of the external attacker gaining access to the

desktop machines that are on the network. It was used to allow the user to send their IP

address to the hacker. The results were as expected the external attacker gained access

through meterpreter as shown in the figure above. Meterpreter command shows that the

external attacker of IP address 192.168.171.5 has gained access to the user computer host.

The msf5 command was used to scan for a handful of open ports. It then enumerates several

common services using Metasploit auxiliary modules built for the purpose. The results in

figure 4.7 show one session has been opened using port 443. This shows that an exploit has

been launched.

4.3.7.2 Exploited file

Figure 23 shows an example of a file that has been downloaded but contains an

exploit. Here the user of the virtual machine has downloaded a file, and the attacker can

access his or her machine.

96

Figure 23: Exploited File (Author, 2019)

The screenshot above shows the user of VM1 accessing a download file from the

internet that is presumed to be an external attacker. The file has been downloaded from

http:192.168.171.5/install.exe check the URL above. As a user, if you download and run the

file, it makes the external attacker with an IP address of 192.168.171.5 to access your

machine as shown in figure 23.

4.3.7.3 Exploited Virtual Machine

Figure 24 shows a machine that has been captured by an attacker and screenshot has

been taken on what the virtual machine is accessing. Meterpreter shows that a session has

been created between the virtual machine and an attacker. It shows that the external attacker

can access all the files on the machine desktop by showing the URL below on

c:\users\ruth\desktop. The attacker can also access the size of the file, last modified date, and

name of the disk where the file was saved on.

97

Figure 24: Exploited Virtual Machine (Author, 2019)

ls command shows the partitions and the files that an attacker can access the user‘s

machine. The results were as expected, as shown in figure 24. The /root/ LQWqtJZc.jpeg

directory was viewed and it was found that the information of the file of this directory

corresponded to the file on the external attacker‘s home page as shown in the figure below.

Screenshot command is used to access what the user is doing in real-time. It also shows

where the screenshot has stored.

4.3.7.4 Saved Captured File

Figure 25 shows where the attacker stores the attached file from different machines.

All the files were captured during testing. The lastly captured screenshot file is

LQwqtZc.jpeg.

Figure 25: Saved Captured file (Author, 2019)

98

In addition to this, the /root/LQWqtJZc.jpeg directory was viewed and it was found

that the information in the metadata file of this directory corresponded to the metadata on the

windows7 machine1. The metadata file is assigned name as a picture. The results were as

expected, as shown in Figure 25 that shows where the attacker has saved the information

accessed from the user‘s machine. Figure 25 is the desktop of the attacker where the captured

file is stored.

4.3.7.5 The Screenshot File

To confirm the captured file as the right one, the file was opened. It was found out to

be the screenshot captured during the users downloaded the file. Figure 26 shows the results

of the captured file. It shows the file name, properties of file and file size. It shows the

directory where the file was saved in the attacker‘s machine.

Figure 26: Screenshot File (Author, 2019)

The screenshot shows the external attacker has gained access to the user‘s machine

and has a screenshot of what he or she is accessing on the machine. The results were as

expected, as shown in Figure 26. This shows that the firewall could not detect unknown

attacks. The same sentiment was echoed by Jansen and Tanner (2014),who stated that an

99

operation is mostly based on signatures for known-bad software, so systems are not ready for

day-zero exploits for which signatures are not yet available. In addition, the placement of

these security mechanisms on the local machine allows malware, after a successful

compromise, to disable the security mechanisms or hide from them. To curb this weakness

the open ports should be blocked and train users not to download a file from unknown

sources. There should be a model to detect unknown attacks. POVIDE Model would block

open ports and detect the rogue file from an attacker. The Model would also check on attack

response rules and used it to detect an attack.

4.3.8 Scanning Stage of Firewall

The purpose of scanning is to see which port is open. The results of the scanning

process are in two computers. The router with the IP Address 192.168.3.3 is the network

server where the firewall server application is installed. The computer with the IP address

192.168.3.13 is the virtual machine for the internal attacker, the internal attacker VM is used

for scanning. The user virtual machine has the IP address of 192.168.3.1. Open ports are port

22, 445 and 135. Open ports are used for exploits. This would be curbed by blocking the

ports and machines with open ports until the user contacts the network administrator.

4.3.8.1 Scanning by the Internal Attacker

Attacker net1 is a virtual machine on the network. Here the internal attacker can scan

the network as shown in figure 4.12. The exploiting tool used for scanning was Zenmap as

shown in figure 4.13 and 4.14 respectively. Intense scanning is a compressive scanning of the

network. It scans all TCP ports. While a scan is running and after it completes, the output of

the nmap command is shown on the screen.

100

Figure 27: Scanning by Internal Network (Author, 2019)

The nmap-T4-A-V 192.168.3.0/24command was used to scan the entire network

server for any opened ports by the internal attacker. Then the Nmap command was used to

scan and report the IP addresses. The results were as expected, as shown in Figure above. The

figure also showed that 192.168.3/24was used to view the content of the whole network

server and scanning details. After scanning the network four host IP addresses were found to

be opened, namely 192.168.3.1, 192.168.3.3, 192.168.3.13 and 192.168.3.24. Next, NMAP

output was used to view the metadata and display the information.

There were four hosts‘ machines with open ports such as 445, 22, and 135, which was

on the network server. Nmap scans do not use the pivots you have set up. This means that the

firewall could not detect threats from the internal attacker. This test was compared to that of

Keshri et al. (2016) where they presented a Denial of Service (DoS) prevention technique

using a firewall and based on data mining techniques, which comprises data selection, data

preprocessing, transformation, and model selection and evaluation. However, the technique

could not detect internal attacks. This weakness could be solved by making sure that all open

ports are blocked and denied access. This would allow the internal attacker would not be able

to scan the network.

https://www.sciencedirect.com/topics/engineering/data-mining-technique
https://www.sciencedirect.com/topics/engineering/data-preprocessing
https://www.sciencedirect.com/topics/engineering/data-preprocessing

101

4.3.8.2 Tool used for Scanning

The tool used for scanning was Zenmap found in information gathering as shown in figure 28

Figure 28: Tools used for Scanning

Here the researcher used information gathering and Zenmap was used as the scanning

tool to scan the whole network. Zenmap was used because it was easier to configure. As

shown the figure 29 below.

4.3.8.3 Zenmap

The internal attacker used Zenmap to scan the entire network. Zenmap is an example

of information-gathering tools. It is used as a threat as it can scan the network.

102

Figure 29: Zenmap

4.4 Weaknesses of Intrusion Detection System

IDS has weak policies such as false positive, false negative and IDS are susceptible to

protocol-based attacks. One significant issue with IDS is that it regularly gives an alert of

false positive. In many cases, false positives are more frequent than actual threats. False-

positive is the process of sending a false alert as a threat when it is actually not a threat.

Another common weak policy is a false negative. In many cases IDS does not alert on the

actual threats instead it ignores it.

4.4.1 Demonstration of the existing Weaknesses of the Intrusion Detection system

In the IDS demonstration, the weaknesses that were tested are a false positive and

false negative. False-positive is when snort used in IDS is sending an alert of attack while the

user is accessing a website. A false negative is when an external attacker is able to hack on

the user‘s pc without being detected by the snort used in IDS.

103

4.4.2 Experimental set up of IDS

The experiments were carried out using two virtual machines. One host network

server and IDS server. IDS was installed on the first system with 80 GB HDD and 2GB RAM

using the default settings and static network settings.

In many cases IDS does not alert on the actual threats instead it ignores it. The

experiment was conducted using two virtual machines as shown in figure 30.

Figure 30: IDS Setup (Author, 2019)

Windows 7 with 64 bits were used as VM. Then ls command was used to view the content of

the logical volume and directory, a snort was used as the IDS server. In false positive VM1

access a website from the internet while the IDS server reports it as a threat. In the false

negative the External attacker is able to launch an exploit that is a threat to VM1 without

being detected by the IDS server.

4.4.3 Algorithm for Demonstrating Weaknesses of IDS

Step 1: Start

Step 2 User: User request to be signed up in the IDS server

Step 3 Actors: Verifies and add the user to the server

104

Step 4: IDS server prompt user to enter username and password

a. The user enters username and password

b. Server checks username

If username does not exist in the file system it sends invalid username to go to step 2

Step 5 Short descriptions: Login verifies user access to firewall server based on username

and password pair that is entered by the user on the end-user device (personal computers or

iPad or smartphone)

Step 6 User initializes the devices used in the server at the same time

Step 7 Pre-condition: User is connected to the network (tested through IP address ping with

VM1, external attacker and the IDS server)

Step 8 Invariant: If time out occurs, restarts the procedures go to step 3 above

Step 9:VM1 accesses the website on the internet

Step 10: IDS server views the site and sends a report as a threat alert then go to step 12 else

go step 13 (false positive)

Step 11: External attacker manages to send an exploit file to VM1. If VM1 downloads the file

and IDS server fails to detect it go to step 12 else go to step 13 (false negative)

Step 12 Weakness has been demonstrated

Step 13 Stop, connection established in cloud

4.4.4 Flowchart Diagram for IDS

The main work of the Intrusion Detection System is to demonstrate the false positive

and false negative respectively. The IDS was demonstrated using the Snort and virtual

machines. The network admin adds the virtual machines on the network. The virtual

machines accessing the network must have a valid credential for signing in to the network.

The device being used is initialized. In response to a connection request initiating a

connection between respective endpoints in the network and virtual machines.

105

In the first test, VM1 accesses a website on the internet, if the IDS server detects a

threat. It sends the report on the threats and that means that false positive is demonstrated. In

the second test external machine send an exploit, VM2 downloads, the exploited file if IDS

detects a threat then the session is created on the cloud. If the IDS does not detect the threat

then false negative is demonstrated. Both the tests end whether the demonstration is achieved

or not.

106

Figure 31: Flowchart Diagram for IDS (Author, 2019)

Network

Admin

Request signup

Enter Username and

password

Username

ok?

InitializeDevice

No

Timeout

Yes

Verifies and add user

Yes

No

VM1 Accesses the website

Connects to the network

IDS detect a

threat?

Weaknesses demonstrated

Yes

No

Sends report on the threat

External Machine

sends exploit

VM2 download

file

Start

Session created on cloud

End

No alert

107

4.4.5 Snort Configuration

In demonstrating, the false positive Snort was used as an IDS used to test false

positive. In figure 32 shows the configuration and initialization of snort. The figure also

shows the different ports used by a snort.

Figure 32: Snort Configuration (Author, 2019)

The ssh -l root -p 14606 localhost command was then used to securely operate

network services over an unsecured network, here the root was used because the researcher

used centos. Next root@localhost‘s password was used to display the metadata on any

physical volume on the system, as shown above. snort -s -l /var/log/snort/ -c

/etc/snort/snort.conf command used to view the configuration of the snort and to run the IDS

mode. It was found out that the IDS was running this as shown in the figure above the first

part. The next stage was the initializing snort; this command was used to reset the snort. It

was found out that output plugins and preprocessors were reset and configured under the file

in the directory called ―/etc/snort/snort.conf‖ as shown in the figure above the second the art.

Lastly, the http_ ports were defined it was fund to allow the IDS server to use different ports

so longs they are defined and configured. The results were as expected as shown in figure 32.

Configuration

Initializing snort

Http_Ports

108

4.4.5.1 Log file

These are a file found in snort when a virtual machine is accessing the network

through the network. These are files sent by a snort as alerts instead of a normal file accessed

from the internet. When the snort log is opened it shows an alert while the virtual machine is

accessing the website as shown in figure 33

Figure 33: Log File (Author, 2019)

ls -lrt /var/log/snort/ was a command to view a directory of the log files that the snort

is able to write into file directory. ls command views the directory of the log file. It was found

out that it only contains two types of files that are alert file and snort.log PCAP (packet

capture). Alert file contains alert metadata in a text format. While snort.log PCAP contained

packets that triggered alerts as shown in figure 33, Snort.log displays the size of the file, date

and time and log number.

4.4.6 False Positive

A false positive is an instance where an IDS incorrectly identifies a normal activity to

be malicious. During normal operation, an IDS can generate thousands of false alarms per

109

day. Network intrusion detection systems no matter if they are anomaly-based or signature-

based - share a common problem: the high number of false alerts or false positives. These

problems usually cause the user, the network administrator to lose confidence in the alerts,

lower the defense levels in order to reduce the number of false positives or to have an

overload of work to recognize true attacks due to IDS mistakes.

4.4.6.1 False alert

This is the example of the false alert, while the site accessed is actually a website. The

results as shown in figure 34

Figure 34: False Alert (Author, 2019)

Curl http://www.testmyids.com/ this a website the user‘s pc is accessing. The website

was found to contain data such uid=0(root) gid=0(root) groups=0(root).

cat/var/log/snort/snort.log.1556536332 commands read the alert log from snort and gather the

list of critical ports to give a report of the file. It was found out that snort gave a report of the

live attack. The report also shows the content type, length of the file, date and time accessed.

It further gives the server the file is received from and the last time the file was modified. The

result was as expected, as shown in figure 34. This result was compared to Ford et al. (2016)

Website

Snort.log

http://www.testmyids.com/

110

who developed an adaptive enterprise IDS. Free open-source break-in prevention software

and Fail2ban used to create the data collection agent. The agents used both real-time and

previous data by applying integrated rules from the information analysis method into

intrusion prevention policies. However, this proposed system had a high false positive rate.

This weakness of false positive can be curbed by developing a strong technique that would

only detect an alert when it happened. POVIDE Model would only detect malicious attacks

that use open ports. It would also analyze the network.

4.4.6.2 Start Apache

Service apache2 start is used to run the file used for hacking into a user‘s machine.

The result shows that the external attacker has successfully started the hacking file. Service

apache was used to run an exploit. For the exploit to work in snort then service apache must

be running.Apache2 is a service script used to start/stop/ restart the Apache2 service under

Debian or Ubuntu Linux. You need to log in as root or use sudo command restart Apache as

shown in figure 35

Figure 35: Start Apache2 (Author, 2019)

https://www.sciencedirect.com/topics/engineering/analysis-method

111

4.4.6.3 Exploiting Tools

There are different exploiting tools that you can use, in this research the exploiting

tool was used to allow penetration. This was to test the false negative. In this case, the

exploiting tool used was Metasploit as shown in figures 36 and 37 respectively.

Figure 36: Exploiting Tools (Author, 2019)

Figure 36 shows different exploit tools that can be used to hack into PC‘s virtual

machines. It shows that attackers have different tools. Figure 37 shows the exploit tool used

by the researcher. Metasploit was used to hacking into the user‘s virtual machine.

4.4.6.4 Metasploit

Other servers used Metasploit for testing. IDS was used to test false negative. In the

firewall, it was used to test if an external attacker can gain access to the network through a

virtual machine. In figure 37 shows the tools used for scanning the network.

112

Figure 37: Metasploit (Author, 2019)

4.4.6.5 Launching an Exploit

Metasploit was used to launching an attack on the virtual machine. The external

attacker to the virtual machine to gain access to the machine launches Metasploit. This is

done through the network in our case through the IDS to demonstrate its weakness on the

false negative.

Metasploit V5.0.10.dev was used as a hacking tool and file system was used to store

the file. The exploit commands were used to launch the hacking tools. It was then found out

that, the attacker gained access to the user‘s machine through the interpreter as mention in

figure 38.

113

Figure 38: Launching an Exploit (Author, 2019)

4.4.6.6 Downloaded File

This is to show that the exploit has been sent and the virtual machine is requested to

download the file.

Figure 39: Downloaded (Author, 2019)

Figure 39 shows a virtual machine trying to run a file that contains an exploit. This is

an example of a file that can be downloaded while it has been sent by an attacker. When the

Exploit

114

virtual machine goes ahead to download the file then the attacker gains access to the machine.

The information of the file is also indicated. That means the file is from the IP address of

192.168.171.5 and the URL is http://192/168.171.5/install.exe. Once the file is downloaded

and saved the machine is automatically in the hands of the hacker who has an IP address of

192.168.171.5 as shown the figure 39.

4.4.6.7 Virtual machine versus the Attacker’s machine

This shows proof that the attacker is accessing the virtual machine and can screenshot

what the user in the virtual machine is doing in the machine. It also shows how the attacker

saves the file and where it is saved.

Figure 40: Virtual Machine versus the attackers' Machine (Author, 2019)

Figure 40 shows an attacked machine on the left and the right side shows that an

attacker can see everything being done in the virtual machine. The attacker has gained access

and can do anything with the virtual machine. Figure 40 right shows files downloaded by an

attacker from the virtual machines where they are stored. All the information acquired in the

virtual machine is stored in the home directory and can be accessed by the attacker.

http://0.0.0.192/168.171.5/install.exe

115

4.4.7 False Negative

False negative occurs when the IDS fails to detect malicious activity. Although the

issue of the IDS not being able to detect malicious data is still a problem and is something

that still needs further investigation, reducing the false alarms should be the main priority.

4.4.7.1 IDS Router Connection

The IDS could not detect the attack on the virtual machine, which is on the network.

The IDS connection is established with the virtual machine and the attacker but could not

detect an attack thus demonstrating the false negative. The IDS in this research used the

snort. This result is shown in figure 41

Figure 41: IDS Router Connection (Author, 2019)

In the IDS server, it shows that there is a communication between the snort with the

external attacker and users‘ pc but it could not detect the attack used to attack the user‘s

machine. It was found out that it could not report on the Metasploit file downloaded by the

user as a hacking tool thus demonstrating the false negative. The IDS could connect to the

User’s PC

External Attacker

116

virtual machine with an IP address of 192.168.10.28 that is presumed to be under attack by

the external attacker. It can also connect to the external attacker through the IP address of

192.168.171.5 without detecting an exploit. The results as shown in the figure above show

communication between the server and the machine, and could not detect the attacks. The

results were compared to that of Linora and Barathy (2014) who proposed an intrusion

detection system that depends on the honey pot. They built the models of normal behavior for

multitier web applications considering both front-end requests and backend database queries.

The result of their work shows their approach is feasible and effective in reducing both false

positives and false negatives. The IDS did not indicate the mechanism it would employ for

detecting whether it is malicious activities or not. This can be curbed by analyzing the

network and only sending an alert when the attack occurs. POVIDE Model would only send

an alert upon detection of the model.

4.5 Design of POVIDE Model

The purpose of this section is to do a quick design and prototype building to realize a

POVIDE Model that allows the processes to be achieved effectively in the cloud environment

without necessarily modifying the functionality and/or infrastructure of the existing cloud

architecture. POVIDE Model was developed from the perspective of its intended users.

4.5.1 Flowchart Diagram of POVIDE Model

In figure 42, it shows activities realized by the flowchart. It starts with a sign up to use

the POVIDE Model, and then the Network Admin verifies the user‘s credentials. If the user is

not valid, it takes you back to sign up page. If the user is valid then the user enters the

username and password. If the username is ok the device is initialized else the user is taken

back to sign up page. After that, the user connects to the network; POVIDE Model scans the

network for the possibility of an open network. If there are any open ports it blocks the port

117

else the session is created on the cloud. VM1 accesses the site on the internet, if the threats

are detected then the site is blocked (false positive). The external attacker sends an exploit to

VM1 in order to attack. The model detects the threats and blocks the IP address where the

threat has originated from, (false negative). If all the threats and perceived threats detected

the session is created on the cloud.

118

Figure 42: Flowchart Diagram of POVIDE Model (Author, 2019)

Network

Admin

Request signup

Enter Username and

password

Username

ok?

InitializeDevice

No

No

Timeout

Yes

Verifies and add user

Yes

Exploited file

No

Model scans the network for open ports

External Attacker sends an exploit to user

VM1 downloads the file exploited

Connects to the network

Detects and Blocksmalicious files and ports

VM1 Accesses the a file on the internet

Threat

Yes

Yes

No

Session created on cloud

End

119

4.5.2 Policy Violation Detection Model Architecture

The user can access the POVIDE Model using different technologies such as laptops

and phones. The user can access different cloud services depending on cloud service

providers. The cloud is divided into layers. The upper layer is Software as a Service (SaaS),

which is the one visible to the final user and involves applications. The next layer is Platform

as a Service (PaaS) and it matters to software developers. It is composed of the operating

systems, application programming interfaces (API), documentation, and basic services.

Infrastructure as a Service (IaaS) refers to the usage of available resources on the cloud:

memory, processors, storage and finally business process as a service (BPaaS) is the delivery

of business process outsourcing (BPO) services that are sourced from the cloud and

constructed for multitenancy. As a cloud service, the BPaaS model is accessed via Internet-

based technologies. A cloud management platform is a suite of integrated software tools that

an enterprise can use to monitor and control cloud computing resources. While an

organization can use a cloud, management platform exclusively for private or public cloud

deployment, these tools set target hybrid and multi-cloud models to help centralize control of

various cloud-based infrastructures. Then there is the Policy Violation Detection Model that

is used to detect any violation on the cloud see figure 43. This is a layer added to bridge the

gap between the cloud and cloud services POVIDE model. The model scans the ports for the

network and blocks the open ports. It also detects and blocks malicious applications before

the session is created in the cloud.

https://searchcloudcomputing.techtarget.com/definition/cloud-computing
https://searchcloudcomputing.techtarget.com/definition/multi-cloud-strategy

120

Figure 43: Policy Violation Detection Model Architecture (Author, 2019)

Laptops

Large

screen

Desktop

Phones

PDA

Business process as a

service

Software as a service

 Platform as a

service

 Infrastructure as a

service

 Operation

support

services

Business

support

services

Data governance

cc Cloud management

platform

M
o

 d
et

ec
ts

 a
n

d
 b

lo
ck

s
m

al
ic

io
u

s
fi

le
 a

n
d

p
o

rt
s

Laptops

Large

screen

Desktop

Phones

PDA

Business process as a

service

Software as a service

 Platform as a

service

 Infrastructure as a

service

 Operation

support

services

Business

support

services

Data governance

cc Cloud management

platform
POVIDE Model

Model scans the network

Scans the network VM1 accesses the application

Detect and blocks malicious files

D
etects a

n
d

 B
lo

ck
s m

a
licio

u
s files a

n
d

 o
p

en
 p

o
rts

Cloud

External attacker sends an exploit

VM1 downloads an exploited file

121

4.5.3 POVIDE Model Algorithm

Step 1: Start

Step 2 User: User request to be signed up in the POVIDE Model

Step 3 Actors: Verifies and add the user to the Model

Step 4: POVIDE Model allows the user to enter the username and password

i. The user enters username and password

ii. Model checks username

If username does not exist in the file system it sends invalid username to go to step 2

Step 5 Short descriptions: Login verifies user access to POVIDE Model based on username

and password pair that is entered by the user on the end-user device (personal computers or

iPad or smartphone)

Step 6 User initializes the devices used in the server at the same time

Step 7 Pre-condition: User is connected to the network (tested through IP address ping with

VM1, VM2, internal attacker external attacker and the POVIDE Model)

Step 8 Invariant: If time out occurs, restarts the procedures go to step 3 above

Step 9: POVIDE Model scans the network for open ports and blocks the open ports

Step 10: VM1 accesses the website on the internet

Step 11: POVIDE Model checks the site. If it a threat block and sends a report, else the site

is genuine go to step 16 (false positive)

Step 12: External Attacker sends an exploit file to VM1

Step 13: VM1 downloads the file from an external attacker

Step 14: POVIDE Model detects the threat and blocks the IP address. Else go to step 16 (false

negative)

Step 15: Connection established in cloud

Step 16: End

4.5.4 POVIDE Model Experimental Setup

The experiment on the POVIDE model helps in curbing the weaknesses of firewalls

and IDS as mentioned in the above demonstration. The experiment was done in two stages

the scanning stage and the penetration stage. The aim of this third set of experiments was to

test the following; Firstly, it was to test the false positive and false negative. Secondly, it

provided insight into which tools are suitable for scanning the network for opened ports and

122

blocks. This latter point is the third objective of this research and the subject of the next

chapter. This section describes the set of experiments that were undertaken in order to curb

the weaknesses that were demonstrated using a firewall and IDS. Here 80GB of HHD and

3GB memory were used. The experiment was used to verify that the POVIDE model can

solve the issue of false positive and false negative. The experiment further demonstrated that

an internal attacker on the network is not able to scan the network. The model is made of four

virtual machines. These are the machines, internal attacker and external attacker as shown in

figure 44.

Figure 44: POVIDE Model Setup (Author, 2019)

POVIDE Model scans the network for the open ports and blocks help curb threats of

hackers. It also solves the issue of false positive and false negative. The model will not send

an alert report when the user is access normal download that is not a threat. Lastly, the model

detects the threat and blocks the IP address where the threat originates.

External

Attacker

Host Network

VM1

Internal Attacker

POVIDE Model

VM2

123

4.5.5 Configuration Stage

The ssh -l root -p 14610 localhost command was then used to securely operate

network services over an unsecured network. Next root@localhost‘s password was used to

display the metadata on any physical volume on the system, as shown in figure 4.30. This

was to allow only valid users to access the system. The configuration of the Ip tables was

done by sudo iptables –t nat –A POSTROUTING –o enp0s9 –j MASQUERADE sudo

iptables –A FORWARD –I enp0s9 –o enp0s8 –j ACCEPT, to enable packet forwarding by

the kernel. Network-address-translation (NAT) on a Linux system with iptables rules so that

the system can act as a gateway and provide internet access to multiple hosts on a local

network using a single public IP address and the codes are shown in appendix V.3.

 snort -l /var/log/snort/ -c /etc/snort/snort.conf -D -i enp0s8 ,snort -l /var/log/snort/ -c

/etc/snort/snort.conf -D -i enp0s9 ,snort -l /var/log/snort/ -c /etc/snort/snort.conf -D -I enp0s3

The three snort commands were configured to log traffic from the three interfaces used.

These are the user‘s machine, an external attacker and the model. The results of the traffic

were shown in figure 45 and the code is placed in appendix V.1.

Figure 45: Configuration Stage (Author, 2019)

124

4.5.6 Scanning Stage

The purpose of scanning is to see which port is open. The result of the scanning

process was done on the POVIDE Model. The Model has the IP Address 192.168.60.60

which is the network server, which is made up of IDS and firewall server application. The

Model is made up of two virtual machines with IP addresses of 192.168.60.80 and

192.168.60.91. One has opened port while the other the all the ports are closed. The computer

with the IP address 192.168.60.80 is the address with closed ports while the IP address of

192.168.60 91 has opened ports. Open ports include port 2105, 445, 139,

49156,20107,49157,1881,5357,135, and 2103. Open ports are used for exploits.

4.5.6.1 Scanning

The POVIDE Model helps in scanning. This helps in such a way that an internal and

external attacker cannot scan the network for the open ports. POVIDE model scans the entire

network and blocks the ports that are opened.

After successfully logging in as root then scan the network through scan-results

command. Scann-results command enables the POVIDE model to provide results. ./port-task

command was used to scan the entire network for any opened port. Only one open port was

found which a virtual machine with an IP address of 192.168.60.91. It also provides the list of

ports opened as shown in the figure above the opened ports provided includes port 2105,

445,139, 49156,20107,49157,1881,5357,135, and 2103.cat blocked.txt command was used to

view the content of the network of POVIDE model, showing the virtual machines that have

been blocked. The report provided is as follows blocked IP 192.168.60.91 and access denied

by the firewall. The results were as expected, as shown in Figure 46. It was found out that

only one PC‘s port was opened and was blocked. This would enable to Model to be secure in

such a way that an internal attacker or the external attacker cannot use the open port to hack

125

into the machine. This means the POVIDE Model would block the internal and external

attacks. This solves the weakness of the firewall and IDS weakness in two ways. First, it

would block the internal attacker from scanning the network and it will not allow the external

attacker to attack using the opened ports. Second, the Model will not require the network

administrator to block the virtual machine has it would do it real time as long as the cat

blocked.txt is configured on the model and the codes are shown in appendix V.5

Figure 46: Scanning (Author, 2019)

126

4.5.6.2 Allowed and Denied Ports

The command groups the ports into two. It either denies or allows the port and IP

addresses. The ports that are allowed include 443 and 88 respectively. The denied IP address

is 192.168.60.91 and it is denied on any port.

Figure 47: Allowed and Denied Ports (Author, 2019)

Then the ufw status command was used to display the machines that are active and

the ones that have been blocked. It was found out that only one was not active because it was

blocked for having an open port on the network. When a port is opened scanning and

exploitation become very easy. The results also show the machines that are active that means

all the ports are closed. These are machines on 192.168.171.0/24 network and 192.168.3.0/24

as shown in figure 47 and the codes are available in appendix V.5.

127

4.5.7 Penetration Stage

Penetration is done by sending all the exploits from the attacker‘s computer to the

server computer through open ports. Open ports are obtained from the scanning stage. The

delivery exploits have the objective to do penetration. Penetration was conducted in order to

test the model for false negative or false positive.

4.5.7.1 False Positive

 As shown in figure 34 the IDS server that uses snort detects the website as an alert. It

detects the web site as a live attack. When it comes to the POVIDE model the user machine

accesses the same website but it will not report it as an attack but a normal website. The

results were as expected as shown in figure 48.

4.5.7.2 Normal Site

This shows a normal site that is not exploited by the attacker. This site of Apache2

Debian was used and was found in http://192.168.171.5/ as shown in figure 48.

Figure 48: Normal Site (Author, 2019)

http://192.168.171.5/

128

4.5.7.3 Results of Accessing Normal Site

The model reports the website access in figure 48 as normal and the IP address

accessing the website as shown in figure 49.

Figure 49: False positive (Author, 2019)

Vi /etc/snort/rules/local. rules command was used to display the results in POVIDE

Model. The results show the packets found, the IP address accessing the site and the IP

address where the site is being accessed. The POVIDE Model does not send false alerts from

the server thus solve the issues of false positive in most IDS. The model would only send a

log file, which contains the web site being accessed; the web site is an HTML file. This test

can prove that POVIDE Model would eliminate false positives.

4.5.7.4 False Negative

As seen in figure 4.26 the IDS server using snort could not detect the attack that

happened. When using the POVIDE model, the attack was detected and blocked the attack.

Figure 50 shows an example of a threat sent by an attacker and accessed by the virtual

machine. Figure 50 is the POVIDE Model shows the results after detecting and blocking the

attack on the VM. It shows the name of the threat, where it‘s coming from and which IP

address affected. It shows that the POVIDE Model would detect and block the attacks in real

129

time thus, eliminating the false negative. It monitors the events on the network, inspects the

data and collects evidence of intrusive behaviors. Whenever it detects suspicious or malicious

attempts, it signals an administrator instantly for a reaction.

4.5.7.5 Exploited Application

This is an example of an application that has been exploited with the attacker. The file

use was found in http://192.168.171.5/install.exe as shown in figure 4.35.

Figure 50: Exploited Application (Author, 2019)

4.5.7.6 Threat Detected and Blocked

This shows that the exploited file in figure 51 has been detected and blocked. The file

has a malicious code of Trojan and was exploited using Metasploit as shown in figure 51.

This is the result of the external attacker trying to attack a user‘s Virtual machine on the

POVIDE model. Meterpreter is the exploiting tool. The file being accessed has been

http://192.168.171.5/install.exe

130

forwarded to the POVIDE model using root/dqsiJyoD.jpeg for analysis. The idle time

command is to show the time the machine has been idle. Shell is a command to show the kind

of machine that is being attacked. The results are as shown in figure 51. The POVIDE Model

is able to detect an attack as it happens if the attacker bay passes the blocked ports. The

model would also check on the different processes created. This would help in detecting the

false negative. This experiment showed that any action performed inside the VM is not

recorded in the log file. Examples include restarting a VM, formatting a disk, and copying a

file. On the other hand, actions performed via POVIDE Model or CLI are recorded the codes

are shown in appendix V.4.

Figure 51: False negative (Author, 2019)

4.5.8 Analysis of Logs

The logs sent for analysis are tcpdump.log. 1556705453, snort.log.1556705351 as

shown above. The result was the traffic shown above. ls -lrt /var/log/snort/ this command

shows all the directory of the encrypted files, including those with and without data. It shows

the date and time of analyzing data and the size of data. The results of this are shown in the

131

figure above. cat /var/log/snort/snort.log.1556705351 command was used to decrypt the file

and log the traffic of the file. The results are shown in figure 4.37 and 4.38.

Figure 52: Analysis of logs (Author, 2019)

4.5.8.1 Analysis of Tcpdump.log

The results were analyzed and decrypted. It‘s upon the network admin to act on it by

blocking the IP address that has sent it.

132

Figure 53: Analysis of tcpdup.log (Author, 2019)

4.5.8.2 Attack Responses Rules

The result in figure 54 indicates the response rules that the POVIDE model uses in the

alert. It gives the date and time of the alert and the name of the attacking tools and the codes

are shown in appendix V.2.

Figure 54: Attack Responses Rules (Author, 2019)

4.6 Proof of Concept

A proof of concept is a closed but working solution, which can be evaluated and

tested subject to clear criteria, from the understanding required to delivering success.

133

4.7 Model Quick Design and Prototype Building

The purpose of this section is to do a quick design and prototype building to realize a

POVIDE Model that allows the processes to be achieved effectively in the cloud environment

without necessarily modifying the functionality and/or infrastructure of the existing cloud

architecture.

POVIDE Model was developed from the perspective of its intended users. The

development process started with gathering the requirement from a survey of the literature.

This was done through the Use Case Diagram. The Use Case Diagram was mapped to the

requirements model to define exact model functionality. From the details of Use Case, the

Sequence Diagram was constructed to describe the way different design components interact

in the architecture. From Sequence Diagram a Class Diagram was created. This is a precise

specification of services in the model. From the Class Diagram, a Component Diagram was

built to define the logical Classes. Finally non-functional was incorporated into the model as

shown in figure 55.

Figure 55: Model Quick Design (Author, 2019)

Functional

Requirement

Non- functional

Requirement

Requirement

gathered

Use case

Sequence diagram Class

diagram

Component

diagram

134

4.7.1 Requirement Gathering

As shown in figure 56 requirements are the collection of needs from the survey of

literature while considering constraints under which the model must operate. The

requirements of the POVIDE Model were informed by a review of the literature with a

similar model. The survey was categorized into functional and non-functional requirements.

Functional requirements are as follows policies; connectivity and access control while Non-

functional requirement is not straight forward the requirement of the model rather it is related

to usability and it includes performance, security, and elasticity.

Figure 56: Requirement Gathering (Author, 2019)

4.7.1.1 Functional Requirement

POVIDE Model has three main functional requirements that need to be achieved these

include Policies, connectivity and access control as shown in figure 57

135

Figure 57: Functional Requirement (Author, 2019)

4.7.1.2 Non-Functional Requirements

Non-functional requirements for POVIDE Model are the performance, security,

usability, and elasticity as shown in figure 58.

 Functional Requirement

Connectivity

User‘s machine shall connect to either wireless or LAN

Access Control

POVIDE Model shall allow access to authorized user pc only

Policies

POVIDE Model shall check for false positive, false negative and network

scanning by users‘ machines

136

Figure 58: Non- Functional Requirements for POVIDE Model (Author, 2019)

Broad set of policies,

technologies and control

deployed to protect data,

application and associated

infrastructure in cloud

To enable hypervisor to create

Virtual Machine or container

with resources to meet the real

time demand

Security

+Confidentiality,

+Integrity

+Availability

The model should be available

and be able to respond to user

requests in real time

It should be easy for users to

accomplish basic application

task the first time they

encounter the application

design (easy to learn) Model

should have minimum errors

that are less severe and easily

recoverable

Performance

+Short response time

Usability

+Learnability

+Error

Elasticity

+Virtual Machine

+Real time

137

4.7.2 Use Case Diagram for POVIDE Model

The Use Case model is a catalog of architecture functionality described using UML

use case. The use case represents a single repeatable interaction that a user or actor

experiences when using POVIDE Model. A use case typically includes one or more scenarios

that describe interactions that go on between the actor and the Model, document the results

and the larger pattern of interaction and may also be extended by other use cases to handle

the conditions. A use case diagram captures use case and relationships between the user and

the Model. It describes the functional requirements of the Model.

POVIDE Model consists of one use case that depicts the whole process. The actors

are users, end-user devices: personal computers, mobile phones, and Ipads. Access control

authorizes and authenticates users‘. Network Admin then verifies and add users to the cloud,

File system stores passwords and data. Figure 59 shows the relationships of the POVIDE

Model use case.

Figure 59: Use Case Diagram of POVIDE Model (Author, 2019)

138

4.7.3 Sequence Diagram for POVIDE Model

The login sequence diagram in figure 60 provides details of the object referenced in

the interaction overview diagram. The sequence diagram is complete information about event

flow between the user and the model.

Figure 60: Sequence Diagram of POVIDE Model (Author, 2019)

The user starts by logging in to the Model, if not valid the application request for the

signup form by the Network administrator. The user is allowed to enter the username and

password. The request for login sends credentials to the application server, which in turn

queries the user details. If the username and password exist in the file system then the user

initializes the device. When the device is initialized, the user can access the application they

want after that policy is verified in the application requested and send back a report by

blocking or creating the session on cloud depending on the policy violation report.

139

Constrain in request to login sequence diagram define preconditions that should be satisfied

before execution. Pre-condition is the existence of a connection between the user and the

POVIDE Model. Connection signs up mean that the user must sign up in the model before

being allowed to log in as shown in figure 60.

4.7.4 Class Diagram

The class diagram is a logical representation of the software system under

construction. Classes generally have a direct relationship to source code or other software

artifacts that can be grouped together into executable components. The model contains

classes and artifacts which are being built or designed as part of the current model as well as

classes and components that have been designed and built earlier and are being reused.

The class diagram is derived from the sequence diagram. Every communicating object in the

sequence diagram represents a class while the message flows between classes form

association. One sequence diagram represents the flow of the POVIDE Model as shown in

figure 61. The sequence diagram has five communicating objects these are Request login,

Server application, File server, user application, and Policies.

140

Figure 61: Class Diagram (Author, 2019)

The request logic class has password, Username, and signup as attributes and

Promptsignup (char), input user name (char), Inputpassword (char) and validateuser() as

methods. This class provides a mechanism for controlling access to the model. The

validateuser() method sends a request to the applicationserver to validate the user based on

Username and Password. Applicationserver class, in turn, invokevaliduser() method which

checks for the existence of username and Password in Filesystemserver. This is an iterative

process that is managed by Return () userdetails method. From the sequence diagram, it is

clear that requestlogin::Signup attribute is set to the return value of the Applicationserver.

Applicationserver class has the usernamedetails and passworddetails that mean that the

applicationserver sends a query to check or search for the details of the user if they exist. It

141

then validates the user by retrieving the valid details. Upon retrieving the userdetails() it

forwards the details to request login in order for the user to proceed.

Filesystemserver class has methods such as initializedevicedetails and return()userdetails.it

allows the user to use the device of choice that has a valid username and password to

establish the connection to the cloud network.

UserApplication class has methods such as Accessaplicationcloud and

return()userdetails. Here the user accesses the application of choice and it then returns ()

users details so that Network Admin knows whether the user has established a connection to

the network cloud.

Policies class has Verifiespolicy, policy violation and return() policydetails. Policy

class verifies policy depending on the application the user is accessing. It then checks

whether the violation has been made or not. If the violation is made the model detects the

threat and blocks the port and IP address of the machine that has launched the threat. If the

violation is not made then the connection is established in the cloud see figure 61.

4.7.5 Component Diagram

The main component of the POVIDE Model is login request, application server, user

application, file system and policies. The file system is composed of the login details and

blocked ports. Login request contains credentials of logging in to the model while the

application server verifies the credentials of logging in details of the users. The user

application component contains the applications, which the user is accessing. Policies

component contains the criteria used and that are put in place for the user to access the

applications to curb violation as shown in figure 62.

142

Figure 62: Component Diagram (Author, 2019)

4.8 Model Development

POVIDE Model is hosted in a virtual box which is a free and open source Cloud

solution. POVIDE Model was deployed with local storage, called a shared Network File

System (NFS) storage. The CLI of the server can be accessed; this is useful as there are more

management options via the CLI than on the graphical management interface. POVIDE

Model development was typically modeled from different interpretations these are Service

providers, policies and security. Model development includes integrated development

environments, application lifecycle management components and application security testing

components. In the service providers' view, Saas enterprise Virtual box tool with a built-in

visual modeler was used. In the policies view survey of the literature was used and as security

is concerned IP addresses were used. Model development followed a group of Agile Software

Development Process methodology called Rapid application development and Unified

143

Modeling Language (UML). RAD emphasizes on working software and user feedback over

strict planning and requirement recording and deals with lots of testing. UML is a

standardized modeling language enabling developers to specify, visualize, construct and

document artifacts of a software system. Thus, UML makes these artifacts scalable, secure

and robust in execution. UML is an important aspect involved in object-oriented software

development.

Figure 63: POVIDE Model Interface (Author, 2019)

4.9 POVIDE Model Testing

It entailed the involvement of selected domain experts to test the POVIDE Model in

the policy violation issues and comment on the extent to which they thought the model

represented real situations while utilizing the cloud. The specific individuals who tested the

model were chief network administrators. In order to have uniform feedback from the chief

network administrators, they were required to fill the evaluation form while testing. They

were guided on how to maneuver in the model. The model also shows the number of

individuals who accessed the model as shown in figure 64. To determine the relationship

between the perception of the ICT experts, the results were fitted using Poisson regression in

144

Log Linear Model with the response variable as the count and the distribution being Poisson

while the link function was algorithm; η = log(µ). The outputs are presented in Table 8 and

Table 9.

Table 8: Criteria for Assessing Goodness of Fit (Author’s, 2019)

Criterion DF VALUE VALUE/DF

Deviance 8 21.8031 2.7254

Scale Deviance 8 21.8031 2.7254

Pearson Chi-square 8 19.994 2.4993

Scaled Pearson Χ² 8 19.994 2.4993

Log likelihood

1344.49

Table 9: Analysis of Parameter Estimates (Author’s, 2019)

 Standard Wald 95 confidence

Parameter DF Estimate Error Lower limit

Upper

limit CHISQ P>CHISQ

Intercept 1 3.8067 0.0563 3.9171 3.9171 4564.57 <0.0001

Perception 1 0.1446 0.0979 -0.0473 0.3365 2.18 0.14

Perception 0 0 0 0 0

 Scale 0 1 0 1 1

The analysis indicates that the perception of the expert does not depend on the ranks the

expert gives on the model. This shows that there is an independent association between the

perception and the rank of the model by the expert. We, therefore, accept their assessment

that where they agreed that the model detects violation of the computer.

145

Figure 64: List of Logins (Author, 2019)

4. 10 High-Level Overview of the POVIDE Model

The section presents a high-level overview of the POVIDE model. Policy Violation

Detection model is a well-defined recurring process model that has been used in a step-by-

step approach to scientifically plan and prepare the cloud for policy violation. Moreover, the

POVIDE model has been represented as a positive process, which means it deals with real-

time detection strategies. The high-level POVIDE model is divided into four distinct tiers as

shown in Figure 65, which enables communication between the other processes. The tiers

include Virtualization tier, application tier, file system tier, and policy tier.

146

4.10.1 Virtualization Tier

The virtualization tier uses a hypervisor VMs to provide the user with an interface for

connecting with a backend database through a virtual box. The virtual box acts as a thin client

which executes only a few of the application logic.

4.10.2 Application Tier

The application tier processes the various inputs and selections received by the virtual

machines. It contains a web server that hosts the server application and its supporting

components.

4.10.3 File System Tier

The file system tier comprises virtual databases through which applications can be

blocked if violations occur. The file system contains user login credentials and log files.

4.10.4 Policy Tier

The policy tier contains the existing detection tools weaknesses used to develop the

POVIDE Model. It also verifies if there is a violation when accessing the application in the

cloud. In cases where there is a violation, it automatically detects the violation in real time

and if there is no violation the connection is established in the cloud.

147

Figure 65: High-level Overview of the POVIDE Model (Author, 2019)

4.11 Experiment Purpose and Scenarios Used

This experiment was meant to precisely prepare a cloud environment for policy

violation detection through the collection of common weaknesses with existing detection and

prevention tools. This experiment identifies intruders who use vulnerabilities to attack. The

experiment focused on demonstrating the weaknesses of firewall and IDS and then

developing a more robust too to curb the weaknesses. The experiment was done as case

scenarios that depict attacks in the cloud. This experiment was conducted to test five case

scenarios that were elaborated earlier in the chapter.

Scenario one is titled scanning attack, which is when the internal user who is on the

network tries to scan the entire network for the opened ports. The virtual machine can suffer

from a data breach and theft of personal data. The stolen data can be maliciously used to

defraud users in different organizations. This is depicted in a situation where a disgruntled

employee exploited the company network server by scanning the entire network setting up a

VM and managing to steal confidential information from the cloud environment.

Virtualization tier

Application tier

File system tier

Policy tier

C
o
n
cu

rr
en

t
p
ro

ce
ss

es

148

Scenario two is entitled penetration attack, which is when the external attacker who is

not on the network manages to attack a virtual machine by collecting all the information and

even doing what he/she wants. Here the attacker can take a screenshot of what the user is

doing. This happens when a hacker wants to get data from an organization that is confidential

or wants to blackmail the user. This is painted when Mark a former network administrator

set service in the cloud to retaliate against the earlier actions of eyewitnesses of junior

employees V and Y who had affirmed against him in a situation that led to his termination.

Mark sends a download to V and he runs the file on his machine not knowing the content and

where the source and Mark manage to get the IP address of the machine. This enabled Mark

to get hold of their unique router IP address. After this, Mark manages to access his

information and blackmailing him.

Scenario three is entitled false positive, is when the intrusion detection system sends

the alerts even when the attacks have not happened. It makes the system not to be efficient.

This happens when a user is accessing a, for example, a website on the internet or any file but

the system is reporting it as an attack. It can even send so many alerts, which others are true

attacks but the network administrator would assume. Mary an employee of a certain

organization, access a website with this URLhttp://www.testmyids.com/ but the server

reports the IP address as a live attack.

The fourth scenario is titled false negative, which is when the intrusion detection

system cannot detect an attack when it happens. This happens when a machine on the

network but the server cannot detect the attacking tool. There is company X and an

authorized IP address attacks the machine of the use on the network and downloads files

without being detected by the Intrusion detection system.

http://www.testmyids.com/

149

4.12 Execution of the Model

The experiment was executed by using weaknesses to deploy a modified form of

policy violation detection in the cloud environment. The aim was for it to scan the network

and block the open ports, which could be vulnerable to the attacker, and to detect and

terminate the rogue hosts. It would also test claims that were highlighted in the scenarios

presented above. POVIDE Model was deployed from the virtual box server to VMs to gather

proofs. The researcher developed a software prototype that was used as intrusion detection

and the virtual machine was used. The developed software prototype was able to run an

application. This prototype was implemented to test the possibility of detecting policy

violations from a simulated cloud environment by modifying the functionality.

Figure 66: POVIDE Model Execution

150

4.13 Evaluation

The aim of this research is to evaluate the POVIDE Model recovered from a private

Cloud using existing intrusion detection tools. To achieve this aim, structural studies on the

Policy Violation detection model was conducted to provide a baseline for evaluating the

policy violation value in the cloud. This aspect of the evaluation was purely technical in

nature and sought to examine how robust the solution was. Four evaluation measures, model

validity, correctness, consistency, and completeness were adopted and used to evaluate the

performance of the model.

4.13.1 Criteria

This section critically evaluates the POVIDE Model that was developed by the

researcher and used modified functionalities of snort and firewall to develop the model in the

cloud environment. The prototype presented in chapter 3 was proof of concept.

To determine this measure, a review was undertaken of the existing weaknesses of

intrusion detection and prevention systems. This was discussed in Chapter 3, Section 3.8.1. It

was deemed appropriate to use a set of criteria to assess the model. The weaknesses that were

proffered by Hock and Kortis (2015); Chowdhary et al., (2014) and the criteria for evaluating

POVIDE Model were reviewed in order to identify a set of criteria, which can be used to

evaluate weaknesses of existing detection, and prevention tools. Morris (2013) set out the

evaluation process. The criteria are as shown in table 10

151

Table 10: Evaluation Criteria (Author, 2019)

Criteria Explanation

Validity

It was possible to demonstrate the weaknesses of the existing

detection and prevention tools in a way that cannot easily be

disputed as demonstrated.

Correctness It was possible to show that the model that demonstrated the

weaknesses is in proper working condition and that the techniques

used to develop the model are acceptable within the context of the

study as demonstrated.

Consistency It was possible to demonstrate that the justifiable method was used

to test and achieve results as demonstrated

Completeness It was possible to show that the maximum amount of proof required

for the demonstration was done and analyzed as demonstrated

4.13.1.1 Validity

In terms of validity, it should be possible to demonstrate the weaknesses of the

firewall and intrusion detection system alongside the Model to curb the weaknesses. It should

also demonstrate the procedures and circumstances by which it was tested in a way that

cannot easily be disputed. There are three aspects to this: weaknesses; the processes and

circumstances that produced the proof; and the fact that it should be indisputable. In the

Cloud, existing performances can be used for all three of these aspects. For example, as the

model keep a record of network traffic of a user‘s activities; they can be used to identify the

origin of threats and to identify the processes that produced the threats. Given that the

POVIDE Model VMs handles the logging, this proof should be indisputable.

In the context of this research, POVIDE Model is able to the identity of the owner of

that VM that causes vulnerability to the cloud. The origin of the VM was demonstrated by

152

viewing the audit logs and IP Address where the actions of each user are recorded, including

the virtual machine name and where it‘s coming from. Therefore, the validity of the model

using existing tools' weaknesses can be demonstrated using the audit logs. The origin of

weaknesses and the processes that produced the proof can also be demonstrated in this way.

Finally, it can also be shown that the audit log cannot easily be changed as only two types of

users can access it, therefore the proof is indisputable.

4.13.1.2 Correctness

This criterion stated that it should be possible to show that the machine that created

the Policy violation detection Model is in proper working condition and that the procedures

used to develop the model is acceptable. Proper working conditions mean that results were

generated by the properly typical operation of the Model. Therefore, the techniques should be

repeatable and, if repeated, should produce the same results.

It was shown in Chapter 4, how typical operations of the model generated the results.

This was demonstrated when the Model could scan and block ports not to allow the attacker

through an open port. To verify the correctness of the model, three different methods were

used and, for each method, that was tested the results were the same. This showed that when.

/port-task and at blocked.txt commands were used it would scan and block the open ports.

The artifacts from the two scanning methods were analyzed and the results were the same.

Therefore, the correctness of the POVIDE Model was tested from weaknesses of the existing

tools such as firewall and intrusion detection tools.

4.13.1.3 Consistency

The criterion of consistency states that it should be possible to demonstrate that the

justifiable method was used to obtain the result of the POVIDE Model. In addition, it states

153

that existing methods, including existing detection tools, can be shown to be sufficient by

acquiring weaknesses needed in a manner that does not compromise either the integrity or the

admissibility of the developed model. In order for the results to be considered consistent, it

should meet the conditions of this criterion, which effectively means that the results must be

reliable. In terms of this research, it was demonstrated in Chapter 4, that existing tools have

the capability to detect intrusion in the cloud but they have weaknesses. Two methods were

used: one was scanning the network and the other one was penetration to the network. Each

method successfully demonstrated the results as required and the analysis of the Model

produced predictable results. Therefore, the consistency of the POVIDE Model demonstrated

how to curb the weaknesses of the existing detection tools.

4.13.1.4 Completeness

The last criterion states that it should be possible to show that a number of

weaknesses required for the demonstration have been collected and analyzed. Another legal

requirement for results is that it should be complete (Reilly et al., 2010). Once the results

have satisfies this criterion, then the legal requirement has been met.

In this research, it was shown in Chapter 4, which a number of tests were done and

results collected. The scanning and penetration stages were analyzed. The audit log contains

collaborative results pertaining to user identity and any actions on the penetration stage.

Without the audit log, it would have been difficult to establish ownership of the threat.

Therefore, the completeness of the results on the POVIDE Model using existing detection

tools can be shown by determining the weaknesses of firewalls and IDS.

In terms of the final legal requirement, which stated that results should be believable,

there was no single criterion equivalent. However, a combination of the validity, correctness

and consistency criteria would provide reassurance of this requirement having been met. This

154

stated that the collected results represent the facts. Overall, the discussion in this section has

demonstrated the results of the POVIDE Model be valid, correct, consistent and complete.

4.14 Comparison of Existing Detection Systems Versus POVIDE Model

Here the researcher is comparing the existing detection systems against the developed model

as shown in table 11

Table 11: Comparison of Existing Detection System versus POVIDE Model (Author’s,

2019)

 IDS Firewall IPS POVIDE

General features Detects attacks

but cannot

prevent the

attacks

Cannot react to a

network nor

initiate effective

countermeasures

Prevent attacks

but cannot detect

attacks

Detects and

prevents attacks in

real time

Anomaly Detection Detects known

attacks

Detects known

attacks

Cannot detect

known attacks

but prevent

known attacks

Detects both

known and

unknown attacks

Signature Detection Cannot detect

unknown

signatures

Cannot detect

unknown

signatures

Cannot detect the

unknown

signature

Detects both

known and

unknown signature

The network

administrator is

required to probe

the attacks once it is

detected

yes yes yes No

Detects Internal

attacks

Can Detect Cannot Detect Cannot Detect Can Detect

False Positive Produces high

false positive

Produces high

false positive

Produces high

false positive

Prevents false

positive

Encrypted packets Encrypted

packets are not

processed

Encrypted

packets are not

processed

Encrypted

packets are not

processed

Detects and blocks

both encrypted and

decrypted packets

155

CHAPTER FIVE

SUMMARY, CONCLUSION, AND RECOMMENDATIONS

5.1 Introduction

This chapter presents the summary based on objectives refer to chapter one, literature

review in finding the survey of literature as referred to chapter two, it is based on research

design methodology and results in chapter three and four respectively. The conclusion also

based on objectives findings and recommendations from the study that comprised a survey of

literature refer to chapter two, model development, prototype development, and piloting and

performance evaluation in chapter three and four. This chapter summarizes this research

before drawing up its conclusions, recommendation, and influences to knowledge, and

underlining possible future work

5.2 Summary

The summary gives a brief overview of the findings based on each objective. The first

objective was to identify weaknesses in the existing intrusion detection and prevention tools

mainly IDS and firewalls. The research indicated that the so many weaknesses in regard to

firewalls and IDS that other researchers have not tackled that need more research to be done.

It also indicated that weak policies contributed to the intrusion detection tools to be weak.

The second objective demonstrated the weaknesses of IDS/ IPS and firewalls on

policy violations in the cloud. The objective was achieved and research indicated the

weaknesses of IDS/ IPS and firewall using open ports.

The third objective was to develop a model to detect and identify policy violations in

real time traffic. The model developed was able to detect the policy violation and block the

host trying to violate the policy. POVIDE Model makes a significant impact and creates

156

healthy competition among Cloud providers to satisfy their Service Level Agreement (SLA)

and improve their Quality of Services (QoS). It is important to note that as stated by Becker

and Bailey (2014) no one framework or model encompasses all of the possible IT controls,

collectively they cover the what, how, and scope of IT Governance. Cloud computing offers

many opportunities to organizations, but risks and challenges as well. For an organization to

succeed institutions must critically examine available data, create policies especially security

policies in the cloud, follow existing standards and develop adequate procedures of ensuring

adherence. The objective was achieved by the model‘s ability to detect policy violations and

to implement cloud solutions in a more secure way. Though it is not exhaustive an approach

that is oriented on most of the stages that an organization must go through to achieve a

relatively secure cloud environment.

The fourth objective evaluated the performance of the model in curbing the

weaknesses of IDS and firewalls on policy violations in the cloud. The objective was

achieved and research indicated that the model is valid, correct, consistent and complete and

with a little improvement would help the cloud in curbing policy violation.

5.3 Conclusions

These days, cloud computing is being distinct and talked about across the ICT

industry under special contexts and with different definitions attached to it. Rapid and

consistent connectivity is a must for the existence of cloud computing. Cloud computing is

without a doubt one of the most enticing technological areas of the current times due, at least

in part to its cost-efficiency and flexibility. However, in spite of the flow in activity and

interest, there are significant, persistent concerns about cloud computing that are hindering

the momentum and will eventually compromise the vision of cloud computing as a new IT

procurement model. This concern is regarding privacy and security. Based on the main

157

objective, four specific Research Objectives were identified. These were to identify

weaknesses in the existing intrusion detection and prevention tools mainly IDS and firewalls.

To demonstrate the weaknesses of IDS and firewalls on policy violations in the cloud, to

develop a model to detect and identify policy violations in real time traffic, To evaluate the

performance of the model in curbing the weaknesses of IDS and firewalls on policy violation

in the cloud. Based on these objectives, three experiments were tested and carried out in order

to generate the data that was needed to test the Model. The model that was selected as the

basis for these experiments was POVIDE Model.

The emphasis of the research was Cloud computing environment, which offers users

access to computing resources that can be hosted at the premises of the Cloud Service

Provider (CSP) or in remote locations. It offers benefits like cost-saving, convenience, and

scalability but it is not without challenges, especially in terms of security, as it can be

influenced by criminal activities, as indicated by the Cloud Security Alliance (CSA).

Increasing the cost of cybercrime and the growing adoption of Cloud by organizations has

demonstrated that there is a need for a policy violation detection model in the cloud

environment. However, the architecture of the Cloud, where computing resources are shared

together, along with its multi-tenancy and the ease with which resources are released and

reallocated, all contribute to making policy violations. This refers to a procedure such as

weakness identification, demonstration, experimentation, and evaluation. More positively, the

resources offered by the Cloud can be influenced not only for illegal purposes but also for

weak policies.

Another way of influencing Cloud resources for the purposes of policy violation is by

either adding a detection tool, new or existing, to the Cloud. This is also a step towards

achieving a robust model in this cloud environment. To date, research has concentrated on

developing tools for specific Cloud technologies with little work on using existing tools. This

158

research gap formed the basis of this research, which aimed to develop a policy violation

detection model in the cloud environment based on the weaknesses of the existing detection

tools.

To meet the first objective, a study of a survey of literature concerning the

weaknesses of the firewall and intrusion system was undertaken. Various weaknesses on IDS

such as false positive and false negative were discussed. Weakness on firewalls such as

firewall not detecting internal attacks and unknown attacks were also discussed. A survey of

the literature review was conducted to document the weaknesses of the firewall and intrusion

detection system. This verified the findings of the literature review in terms of weaknesses. It

was found that much has not been done in regard to curbing those weaknesses in the cloud

environment.

For the second objective, the focus was on demonstrating the weaknesses of firewalls

and IDS on policy violations. Therefore, the first weakness of the firewall was demonstrated

through an experiment. The test was done on the firewall to demonstrate if an internal user on

the network can scan the network. The weakness was achieved. The second test was on the

penetration of external users using a Metasploit exploit tool to gain access to the user‘s

machine by sending a download file. The second weakness of IDS/IPS was demonstrated

through the false positive and false negative. False positive was demonstrated by a user‘s

virtual machine accessing a website while the IDS report it as an attack. The other

demonstration was on false negative where the external user managed to gain access to the

user‘s machine without being detected by IDs. The experiments demonstrated and verified

the weaknesses of firewall and IDS, but went further than this to determine it in relation to

the cloud environment. It was found that there are two stages of testing that is penetration and

scanning stage. There is a required tool to curb the weaknesses through scanning and

detecting true attacks.

159

In terms of the third objective, experiments were carried out to detect and identify

policy violations in real time. The developed model was designed to detect malicious action

and terminate the node in real time from a cloud environment as a way of planning and

preparing for potential security incidents. If implemented and policies are strict it can work

well. It also analyses logs on what is being accessed. The results showed that a virtual

machine accessing the network must be scanned for the open ports then in case of any

malicious act happens the model detects and terminates the system until verifies by the

network administrator.

 The emphasis of the fourth objective was acknowledgment. The model was evaluated

in terms of validity, correctness, consistent and complete. The model deal with users with

Role-Based Access Control (RBAC) and users are authenticated via the Active Directory

(AD). POVIDE Model keeps a log file and monitors the network traffic, which records all

user logins. It also scans the network. An experiment was conducted to test if all components

work together. The experiment provided the user‘s activities, which proved that the

information in the log can be used to associate data with a particular user.

5.4 Recommendations

i. Users of the cloud should be trained on the use of cloud and they should be aware of

the cloud in their institutions or organizations. Most users used the cloud in their

organization but they have limited knowledge on it. The organization staff should be

trained so that violation of policies due to the unknowingly accessing malicious

applications should not rise.

ii. Causes of policy violation should be communicated to users and penalties for

violation should be put in place to enable self-discipline. Causes of policy violation

160

should be document and penalties outlined in the staff book so that policy violations

should not increase.

iii. The cloud policies should be outlined properly in each and every organization's policy

book. Organizations should use ISO 27001-policy standard as indicated by Council-

CSCC, 2012. ISO 27001 provides standards that the organizations can be adapted to

allow a smooth use of the cloud.

iv. Cloud computing technology is changing very fast requiring security measures and

policies to be modernized frequently at a speed to match the changing behavior of the

cloud policy violations. In addition, licensing is vital to the security of clouds, it

would only allow qualified organization rights to host cloud.

5.4.1 Policy recommendations

Policies should be strictly implemented in clouds. Organizational and governing

bodies should visit clouds‘ staff and student‘s infrastructure on a regular base to evaluate the

efficiency of the security precautions adopted by the suppliers. This would minimize the

policy violation in the organization because all members of staff would be aware of policies

in place.

The government should allow cloud service providers and institutions to incorporate

and punish users who violate policies as a breach of contract. Because the government lacks

policy standards on the cloud it is very difficult to punish the policy violators leaving

different organizations using the cloud at risk.

 The government must have national cloud policy, laws and standardized SLA to

prevent cloud clients from exploitation since CSP has an upper hand and secretion in

implementing the SLA.

161

Most of the attacks occurring in the cloud must be openly available to determine the

reliability of cloud suppliers. This form of sharing helps other network administrators to

safeguard against new attacks. It is important to frequently inspect various cloud security-

related factors including risks, threats, challenges, vulnerabilities, and attacks. The likelihood

of a threat attack can be reduced by extremely understanding the dependencies among other

considerations.

Lastly, note that virtualization is the determinant of cloud computing. Nevertheless,

the idea of using virtualization in cloud computing is not yet more established as there are

several numbers of attacks that target the virtualization environment. Consequently, it is very

important to develop reliable schedulers that, by design, contain adequate security

mechanisms. The researcher has identified a few areas that are still not covered in the cloud

environment security such as appraisal, and migration of data from one cloud to another.

5.4.2 Recommendation for Future work

In the study, objectives that were outlined were achieved based on the suggestions

presented in previous chapters. However, the researcher was able to identify a number of

issues and challenges hence the researcher suggested the following as topics of research to be

conducted in the future. One of the biggest concerns is associated with data; data movement

from one cloud to another. Furthermore, clouds fail short of tools that guarantee that the

user‘s data has been deleted from the cloud if the contract is concluded.

In this research, the achievement of the POVIDE Model is limited to a simulated

cloud environment as opposed to a fully-fledged cloud environment. This is because the

researcher perceived that the model might be very sensitive to the local laws of a given

jurisdiction. Since a variety of standards and policies are not very clear.

162

The current research focused on scanning and detecting threats that are related to

potential crimes; however, due to the increase of technological devices, one may want to

know how to deal with the combinatorial explosion of big data. It is suggested that a further

extension of the prototype should be developed to locally cache big data at remote and to

enable more efficient threat detection.

At the time of this research, there existed no policy standards that had its focus on the

cloud environment. It is the researcher‘s opinion that more research should be conducted so

that the POVIDE Model can be refined further. Additionally, it would be realistic to improve

the methodologies and techniques used in developing the prototype with a view to its possible

adjustment. In as much as the model could prove the concept the researcher believes that

more research, centered in a technical organizational setting, might further highlight the

viability of the POVIDE Model.

Nevertheless, much work remains to be done on the cloud challenges. As the cloud

continues to gain power, numerous technical, legal and operational challenges are being

experienced. The researcher was able to identify a number of challenges in this research. It is

therefore suggested that technical, legal and operational solutions should be pursued that

would ensure that the legal aspects of cloud computing keep pace with the advances in the

technology.

Lastly, the researcher encouraged a futuristic evaluation of the proposed model, as it

would provide an assessment that would help enforce operational tests that may end up

providing confidence, based on the performance of the model. Further improvements will

allow the model to adapt easily to various scenarios. It is the researcher‘s opinion that if

extensive research on the suggested future work is conducted, then the POVIDE model

adaptation in the cloud environment will be more accepted.

163

REFERENCE

Aggarwal, P., & Sharma, S. K. (2015). Analysis of KDD dataset attributes-class wise for

intrusion detection. Procedia Computer Science, 57, pp. 842-851.

Agrawal, N., & Tapaswi, S. (2017). The performance analysis of honeypot based intrusion

detection system for a wireless network. International Journal of Wireless

Information Networks, 24(1), pp. 14-26.

Ahanger, T. A. (2014). Port scan-a security concern. International Journal of Engineering

and Innovative Technology (IJEIT), 3(10), pp. 241.

Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A survey of network anomaly detection

techniques. Journal of Network and Computer Applications, 60, pp. 19-31.

AINabulsi, H., Alsmadi, I., & Al-Jarrah, M. (2014). Textual Manipulation for SQL Injection

Attacks. J. of Computer Network and Information Security (IJCNIS), 1(1), pp. 26-33.

Ali, M., Khan, S. U., & Vasilakos, A. V. (2015). Security in cloud computing: Opportunities

and challenges. Information sciences, 305, pp. 357-383.

Al-Jarrah, O., & Arafat, A. (2014). ―Network Intrusion Detection System using attack

behavior classification.‖ In. Information and Communication Systems (ICICS).

(2014). 5
th

 International Conference,pp. 1-6.

Aljawarneh, S., Aldwairi, M., & Yassein, M. B. (2018). Anomaly-based Intrusion Detection

System through feature selection analysis and building the hybrid efficient model.

Journal of Computational Science, 25, pp. 152-160.

Almorsy, M., Grundy, J., & Müller, I. (2016). An analysis of the cloud computing security

problem. arXiv preprint arXiv:1609.01107.

Alnabulsi, H., Islam, M. R., & Mamun, Q. (2014, November). Detecting SQL injection

attacks using SNORT IDS. In Asia-Pacific World Congress on Computer Science and

Engineering, pp. 1-7 IEEE.

Alsafi, H. M., Abduallah, W. M., &Pathan, A. S. K. (2012). IDPS: An Integrated Intrusion

Handling Model for Cloud. arXiv preprint arXiv:1203.3323.

Alshamrani, A., & Bahattab, A. (2015). A comparison between three SDLC models waterfall

model, spiral model, and Incremental/Iterative model. International Journal of

Computer Science Issues (IJCSI), 12(1), 106.

Alshamrani, A., & Bahattab, A. (2015). A comparison between three SDLC models

waterfalls model, spiral model, and Incremental/Iterative model. International

Journal of Computer Science Issues (IJCSI), 12(1), pp. 106.

Alsunbul, W. A., Algird, A. R., Sanjer, M. F., & Reddy, K. (2014). Inflatable Device for

Intraoperative Control Extension In Cervical Spine Surgery. Canadian Journal of

Neurological Sciences, 41(2), 293-295.

164

Antunes, N., and Vieira, M., (2012).Defending against web application vulnerabilities.ACM,

45, pp. 66–72.

Ashwini, M. K., Pratiksha, G., Anuja, K., Varsharani, S., & Gayatri, S. (2017). Secure

network system using Honeypot. International Journal of Advanced Research in

Computer and Communication Engineering, 6(2), pp. 230-232.

Ashwini, M., Gayatri M., & Chawan, P. (2012). Analysis of various software process models.

International Journal of Engineering Research and Applications, 2(3), pp. 2015-

2021.

Aslahi-Shahri, B. M., Rahmani, R., Chizari, M., Maralani, A., Eslami, M., Golkar, M. J., &

Ebrahimi, A. (2016). A hybrid method consisting of GA and SVM for the Intrusion

Detection System. Neural Computing and Applications, 27(6), pp. 1669-1676.

Assuncao, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., & Buyya, R. (2015). Big data

computing and clouds: Trends and future directions. Journal of Parallel and

Distributed Computing, 79, pp. 3-15.

Avram, M. G. (2014). Advantages and challenges of adopting cloud computing from an

enterprise perspective. Procedia Technology, 12, pp. 529-534.

Aziz, T., Razak, A., & Ghani, A. (2017).The performance of different IEEE802: 11 security

protocol standards on 2.4 GHz and 5GHz WLAN networks. In. 2017 International

Conference on Engineering Technology and Technopreneurship (ICE2T), pp. 1-7.

Bardach, E., & Patashnik, M. (2015). A practical guide for policy analysis: The eightfold

path to more effective problem-solving. CQ Press.

Becker, J., & Bailey, E. (2014). A comparison of IT governance & control frameworks in

cloud computing.

Beigi Mohammadi, N., Mišić, J., Mišić, V. B., & Khazaei, H. (2014). A framework for

intrusion detection system in advanced metering infrastructure. Security and

Communication Networks, 7(1), pp. 195-205.

Bensefia, H., & Ghoualmi, N. (2011). An intelligent system for decision making in firewall

forensics. International Journal of Digital Information and Communication

Technology and its Applications, 166, pp. 470-484.

Bleikertz, S., Vogel, C., & Groß, T. (2014). Cloud radar: Near real-time detection of security

failures in dynamic virtualized infrastructures. In: Proceedings of the 30
th

 Annual

Computer Security Applications Conference pp. 26-35.

Buck, K., &Hanf, D. (2010). Cloud SLA considerations for the Government Consumer:

Cloudcomputing. International Conference on Signal Processing, Communication,

Power and Embedded System (SCOPES),pp. 527-531.

Bulajoul, W., James, A., & Pannu, M. (2015). Improving network Intrusion Detection System

performance through quality of service configuration and parallel technology. Journal

of Computer and System Sciences, 81(6), pp. 981-999.

165

Bursztein, E., Martin, M., & Mitchell, J.C. (2011). Text-based CAPTCHA strengths and

weaknesses. ACM Conference on Computer and Communications Security.

Butun, I., Morgera, S. D., & Sankar, R. (2014).A survey of intrusion detection systems in

wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(1), pp. 266-

282.

Buyya, R., Yeo, S., Venugopal, S., Broberg, J., & Brandic, I., (2009). Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th

utility. Future Generation computer systems, 25(6), pp 599-616.

Carlin, A., Hammoudeh, M., & Aldabbas, O. (2015). Intrusion detection and countermeasure

of virtual cloud systems-state of the art and current challenges. International Journal

of Advanced Computer Science and Applications, 6(6).

Chang, V. (2015). A proposed cloud computing business framework. Nova Science Publisher.

Chang, V., Walters, R. J., & Wills, G. (2013a). The development that leads to the cloud

computing business framework. International Journal of Information Management,

33(3), pp. 524-538.

Chang, V., Walters, R. J., & Wills, G. (2013b). Cloud Storage and Bioinformatics in a private

cloud deployment: Lessons for data-intensive research. In. Cloud computing and

service Science, Springer Lecture Notes Series, Springer Book.

Chaware, S. (2011). Banking Security using Honeypot. International Journal of Security and

its Applications, 5(1), pp. 31-38.

Chen, T., Zhang, X., Jin, S., & Kim, O. (2014). Efficient classification using parallel and

scalable compressed model and its application on intrusion detection. Expert Syst.

Appl. 41(13), pp. 5972–5983

Chiu, D., Weng, S. H., & Chiu, J. (2017). Backdoor use in targeted attacks. A Trend Micro

Research Paper.

Chomsiri, T., He, X., Nanda, P., & Tan, Z. (2014, September). A stateful mechanism for the

tree-rule firewall. In 2014 IEEE 13th International Conference on Trust, Security and

Privacy in Computing and Communications (pp. 122-129). IEEE.

Chowdhary, M., Suri, S., & Bhutani, M. (2014). Comparative study of the Intrusion

Detection System. International Journal of Computer Sciences and Engineering, 2(4),

pp. 197-200.

Council-CSCC, C. S. C. (2012). The CSCC practical guide to cloud service level agreements.

Dabbour, M., Alsmadi, I., & Alsukhni, E. (2013). Efficient assessment and evaluation for

websites vulnerabilities using SNORT. International Journal of Security and Its

Applications, 7(1), 7-16.

Dagada, R. (2014). Legal and policy aspects to consider when providing information security

in the corporate environment (Doctoral dissertation, University of South Africa).

166

Dai, J., Gan, Z., Han, B., & Liu, X., (2013).U.S. Patent No. 8,578,370. Washington, DC: U.S.

Patent and Trademark Office.

Dall, C., & Nieh, J. (2014). KVM/ARM: The design and implementation of the Linux ARM

hypervisor. ACM SIGARCH Computer Architecture News, 42(1), pp. 333-348.

Dash, S. B., Saini, H., Panda, T. C., & Mishra, A. (2014). Service level agreement assurance

in cloud computing: A trust issue. International Journal of Computer Science and

Information Technologies, 5(3), pp. 2899-2906.

Day, D., & Burns, B. (2011, February). A performance analysis of snort and suricata network

intrusion detection and prevention engines. In Fifth International Conference on

Digital Society, Gosier, Guadeloupe (pp. 187-192).

Devikrishna, K. S., & Ramakrishna, B. B. (2013). An artificial neural network-based

Intrusion Detection System and classification of attacks. International Journal of

Engineering Research and Applications (IJERA), 3(4), pp. 1959-1964.

Dewanjee, R. (2016, October). Intrusion Filtration System (IFS)-mapping network security in

new way. In 2016 International Conference on Signal Processing, Communication,

Power and Embedded System (SCOPES) (pp. 527-531). IEEE.

Dhopte, S., & Chaudhari, P. M. (2014). Genetic algorithm for Intrusion Detection System.

International Journal of Research in Information Technology (IJRIT), 2(3), pp. 503-

509.

Dietrich, N. (2017). Snort 2.9. 9. x on Ubuntu 14 and 16. línea]. Available: https://www.

snort. org/documents/snort-2-9-9-x-on-ubuntu-14-16 Date accessed: 13 June 2018.

Dighe, P., Agrawal, P., Karnick H., Thota S., & Raj B. (2013). Scale-independent raga

identification using chromagram patterns and swara-based features. In. 2013 IEEE

International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–4.

Du, P., & Li, X. (2016, October). T-Netm: Transparent network monitoring on virtual

machine. In 2016 2nd International Conference on Cloud Computing and Internet of

Things (CCIOT), pp. 64-67. IEEE.

Edwards, N., & Dalton, C. I. (2014).U.S. Patent No. 8,719,914. Washington, DC: U.S. Patent

and Trademark Office.

Emeakaroha V., Netto M., Calheiros R., Brandic I., Buyya R., and deRose, C., (2012)

―Towards autonomic detection of SLA violations in cloud infrastructures,‖ Future

Generation Computer Systems, vol. 28, no. 7, pp. 1017–1029.

Erl, T., Puttini R., & Mahmood Z. (2013). Cloud computing: Concepts, technology &

architecture (1
st
 Ed.). Massachusetts: Prentice Hall PTG.

Eronen, P., & Zitting, J. (2001). An expert system for analyzing firewall rules. In:

Proceedings of the 6
th

 Nordic Workshop on Secure IT Systems,pp. 100–107.

167

Fatema K., Vincent C., Emeakaroha P., Healy D., John P., Morrison P., and Lynn

T.,(2014)."A survey of Cloud monitoring tools: Taxonomy, capabilities and

objectives," 1. Parallel Distrib Comput.vo!.74, pp. 2918-2933.

Felici, M., & Pearson, S. (2014). Accountability for data governance in the cloud. In Summer

School on Accountability and Security in the Cloud, pp. 3-42 Springer, Cham.

Feng, W., Zhang, Q., Hu, G., & Huang, X. (2014). Mining network data for intrusion

detection by combining SVMs with ant colony networks. Future Generation

Computer Systems, 37, pp. 127-140.

Fernandez, E. B., Yoshioka, N., & Washizaki, H. (2014). Patterns for cloud firewalls. Asian

PLoP (Pattern Languages of Programs), Tokyo.

Ferreira, J., Soares, J. N., Jardim-Goncalves, R., & Agostinho, C. (2017, May). Management

of IoT devices in a physical network. In 2017 21
st
 International Conference on

Control Systems and Computer Science (CSCS), pp. 485-492 IEEE.

Fevre, R., Lewis, D., Robinson, A., & Jones, T. (2012). Insight into ill-treatment in the

workplace: Patterns, causes, and solutions. Contemporary Readings in Law & Social

Justice, 4(2).

Fontugne, R., Mazel, J., & Fukuda, K. (2014). Hadoop: a MapReduce framework for network

anomaly detection. In: 2014 IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), pp 494–499.

Ford, M., Mallery, C., Palmasani, F., Rabb, M., Turner, R., Soles, L., & Snider, D. (2016). A

Process to Transfer Fail2ban Data to an Adaptive Enterprise Intrusion Detection and

Prevention System. Proceedings of the 2016 IEEE Southeast Con, March 31-April 3,

2016, Norfolk, VA.

Fujinoki, H. (2013). Dynamic Binary User-Splits to Protect Cloud Servers from DDoS

Attacks. Paper presented at the Proceedings of the Second International Conference

on Innovative Computing and Cloud Computing, Wuhan, China.

Galante, J., Kharif, O., & Alpeyev, P. (2011, May 16). Sony Network Breach Shows Amazon

Cloud‘s Appeal for Hackers. Retrieved 2019, from

Gamage, N. K., Whitner, R. B., & Bartz, T. G. (2016). U.S. Patent No. 9,270,542.

Washington, DC: U.S. Patent and Trademark Office.

Ganga, I. S. (2014). U.S. Patent No. 8,798,056. Washington, DC: U.S. Patent and Trademark

Office.

Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding the determinants of cloud

computing adoption using an integrated TAM-TOE model. Journal of Enterprise

Information Management, 28(1), pp. 107-130.

Ghorbel, A., Ghorbel, M., & Jmaiel, M. (2017). Privacy in cloud computing environments: A

survey and research challenges. The Journal of Supercomputing, 73(6), pp. 2763-

2800.

168

Ghosh, A., Cosby, S., Keister, A., Bryant, B., & Taylor, S. (2018). U.S. Patent Application

No. 10/043,001.

Gilchrist, A. (2016). Designing industrial internet systems. In Industry 4.0 (pp. 87-118).

Apress, Berkeley, CA.

Golshan, A., & Binder, S., (2016). U.S. Patent No. 9,519,781. Washington, DC: U.S. Patent

and Trademark Office.

Gong, C., Liu, J., Zhang, Q., Chen, H., & Gong, Z. (2010, September). The characteristics of

cloud computing. In: Parallel Processing Workshops (ICPPW), 2010 39
th

International Conference on pp. 275-279 IEEE.

Gonzales, D., Kaplan, J. M., Saltzman, E., Winkelman, Z., & Woods, D. (2017). Cloud-

trust—A security assessment model for infrastructure as a service (IaaS) clouds. IEEE

Transactions on Cloud Computing, 5(3), pp. 523-536.

Goodin, D. (2009, December 9). ‗Zeus bot found using Amazon‘s EC2 as C&C server.‘ The

Register.

Gould, K., & Danforth, A. (2016). U.S. Patent No. 9,497,503. Washington, DC: U.S. Patent

and Trademark Office.

Goyal, S. (2014). Public vs private vs hybrid vs community-cloud computing: A critical

review. International Journal of Computer Network and Information Security, 6(3),

20.

Gozman, D., & Willcocks, L.P. (2015). Crocodiles in the regulatory swamp: Navigating the

dangers of outsourcing, SaaS and shadow IT. ICIS.

Gul I., & Hussain M. (2011). Dstributed cloud intrusion detection model. Int. J.adv. sci.

technology 34 (38) pp. 135.

Gul, I., & Hussain, M. (2011). Distributed cloud intrusion detection model. International

Journal of Advanced Science and Technology, 34(38), 135.

Hameed, A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman, P. P., Kolodziej, J., Balaji, P.,

& Khan, S. U. (2016). A survey and taxonomy on energy-efficient resource allocation

techniques for cloud computing systems. Computing, 98(7), pp. 751-774.

Hamidi A., Hadi S., and Sharif M., (2011)."A transparent virtual machine monitor level

package compression network service," Procedia Computer Science. Vo.3, pp. 401-

407.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The

rise of ―big data‖ on cloud computing: Review and open research issues. Information

systems, 47, pp. 98-115.

Hatem, S. S., & El-Khouly, M. M. (2014). Malware detection in cloud computing. Int J Adv

Comput Sci Appl, 5(4), 187-192.

169

He, X., Chomsiri, T., Nanda, P., & Tan, Z. (2014). Improving cloud network security using

the Tree-Rule firewall. Future Generation Computer Systems, 30, pp. 116-126.

Hock, F., & Kortis, P. (2015). Commercial and open-source based Intrusion Detection

System and Intrusion Prevention System (IDS/IPS) design for IP networks. In:

Emerging eLearning Technologies and Applications (ICETA), 2015 13th

International Conference on, pp. 1-4.

Hu, H., Han, W., Ahn, G. J., & Zhao, Z. (2014). FLOWGUARD: Building robust firewalls

for software-defined networks. In Proceedings of the Third Workshop on Hot Topics

in Software-defined Networking, pp. 97-102 ACM.

Huang, D., & Wu, H. (2017). Mobile Cloud Computing: Foundations and Service Models.

(1
st
 Ed.). Morgan Kaufmann.

Huang, V. S. M., Huang, R., & Chiang, M. (2013, March). A DDoS mitigation system with

multi-stage detection and text-based during testing in cloud computing. In 2013 27
th

International Conference on Advanced Information Networking and Applications

Workshops, pp. 655-662 IEEE.

Ibrahim, A. S., Hamlyn-Harris, J., & Grundy, J. (2016). Emerging security challenges of

cloud virtual infrastructure. In Proceedings of APSEC 2010 Cloud Workshop, Sydney,

Austrailia, 30
th

 Nov 2010.

 Indre, I., & Lemnaru, C. (2016). Detection and prevention system against cyber-attacks and

botnet malware for information systems and Internet of Things. IEEE 12
th

International Conference on Intelligent Computer Communication and Processing

(ICCP) (2016), pp. 175-182, Cluj-Napoca.

Jabez, J., & Muthukumar, B. (2015). An Intrusion Detection System (IDS): Anomaly

detection using outlier detection approach. Procedia Computer Science, 48, pp. 338-

346.

Jaiganesh, V., Sumathi, P., & Mangayarkarasi, S. (2013). An analysis of Intrusion Detection

System using backpropagation neural network. IEEE Computer Society Publication.

Jansen, B., & Tanner, A. (2014). U.S. Patent No. 8,875,272. Washington, DC: U.S. Patent

and Trademark Office.

Jansen, B., & Tanner, A. (2014). U.S. Patent No. 8,875,272. Washington, DC: U.S. Patent

and Trademark Office.

Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the Internet of

Things: perspectives and challenges. Wireless Networks, 20(8), pp. 2481-2501.

Jones, N., George, E., Merida, F.I., Ramussen, U., & Volzow, V. (2014). Electronic Evidence

Guide - A Basic Guide for Police Officers, Prosecutors, and Judges. Retrieved from

https://au.int/sites/default/files/newsevents/workingdocuments/34122-wd-annex_4_-

_electronic_evidence_guide_2.0_final-complete.pdf

170

Joy, A. M. (2015, March). Performance comparison between linux containers and virtual

machines. In 2015 International Conference on Advances in Computer Engineering

and Applications pp. 342-346. IEEE.

Jula, A., Sundararajan, E., & Othman, Z. (2014). Cloud computing service composition: A

systematic literature review. Expert systems with applications, 41(8), 3809-3824.

Kadayiruppu, E. (2014). Investigative analysis of security issues and challenges. In Cloud

computing and their counter measures. Journal Impact Factor, 5(12), pp. 57-63.

Kalaiprasath, R., Elankavi, R., & Udayakumar, D. R. (2017). Cloud. Security and

Compliance-A Semantic Approach in End to End Security. International Journal Of

Mechanical Engineering And Technology (Ijmet), 8(5), pp. 987-994.

Kambow, N., & Passi, L. K. (2014). Honeypots: The need for network security. International

Journal of Computer Science and Information Technologies, 5(5), pp. 6098-6101.

Karnwal T., Sivakumar T., & Aghila G. (2012).A comber approach to protect cloud

computing against XML DDoS and HTTP DDoS attack.In Proceedings of the 2012

IEEE Students‘ Conference pp.2.

Karthikeyan, R., Geetha, D. T., Shyamamol, K. S., & Sivagami, G. (2017). Advanced

Honeypot architecture for network threats quantification. The International Journal of

Engineering and Techniques, 3(2), pp. 2395-1303.

Kaur, T., Malhotra, V., & Singh, D. (2014). Comparison of network security tools-firewall,

Intrusion Detection System, and Honeypot. Int. J. Enhanced Res. Sci. Technol. Eng,

pp. 200-204.

Kavis, M. J. (2014). Architecting the cloud: Design decisions for cloud computing service

models (SaaS, PaaS, and IaaS). John Wiley & Sons.

Kene, S. G., & Theng, D. P. (2015). A review of intrusion detection techniques for cloud

computing and security challenges. In Electronics and Communication Systems

(ICECS), 2015 2
nd

 International Conference on pp. 227-232. IEEE.

 Keshri, A., Singh, S., Agarwal, M., & Nandiy S. (2016). DoS attack prevention using IDS

and data mining. International Conference on Accessibility to Digital World (ICADW)

pp. 87-92 Guwahat.

Khalil, I. M., Khreishah, A., & Azeem, M. (2014). Cloud computing security: A survey.

Computers, 3(1), pp. 1-35.

Khamphakdee, N., Benjamas, N., & Saiyod, S. (2014, May). Improving intrusion detection

system based on snort rules for network probe attack detection. In 2014 2nd

International Conference on Information and Communication Technology (ICoICT)

pp. 69-74. IEEE.

Khurana, H., Guralnik, V., & Shanley, R. (2014). U.S. Patent No. 8,793,790. Washington,

DC: U.S. Patent and Trademark Office.

171

Kim, D., & Solomon, M. G. (2016). Fundamentals of information systems security. Jones &

Bartlett Publishers.

Kirat, D., Vigna, G., & Kruegel, C. (2014). BareCloud: Bare-metal analysis-based evasive

malware detection. In USENIX Security Symposium, pp. 287-301.

Kondra, J. R., Mishra, S. K., Bharti, S. K., & Babu, K. S. (2016). Honeypot-Based Intrusion

Detection System: A performance analysis. International Conference on “Computing

for Sustainable Global Development”, INDIA Com (pp. 3947-3951). New Delhi:

IEEE.

Krombholz, K., Hobel, H., Huber, M., & Weippl, E. (2015). Advanced social engineering

attacks. Journal of Information Security and Applications, 22, pp. 113-122.

Kumar, M., & Hanumanthappa, M. (2013). Scalable intrusion detection systems log analysis

using cloud computing infrastructure. In: 2013 IEEE International Conference on

Computational Intelligence And Computing Research (ICCIC).pp 1–4.

Kumar, V., & Sharma, G. D. (2016).Towards configured Intrusion Detection Systems.

Global Journal of Computer Science and Technology, 16(4), pp. 1-10.

Larman, C., & Basili, V. R. (2003). Iterative and incremental developments. a brief history.

Computer, 36(6), pp. 47-56.

Latha, K. M. (2016). Learn about intrusion detection and prevention. United States: Juniper

Networks.

Lee, K., Kim, D., Ha, D., Rajput, U., & Oh, H. (2015, September). On security and privacy

issues of fog computing supported the Internet of Things environment. In: Network of

the Future (NOF), 2015 6
th

 International Conference on the, pp. 1-3 IEEE.

Li, C., & Gaudiot, J. L. (2019, July). Detecting Malicious Attacks Exploiting Hardware

Vulnerabilities Using Performance Counters. In 2019 IEEE 43rd Annual Computer

Software and Applications Conference (COMPSAC) Vol. 1, pp. 588-597. IEEE.

 Liao, H., Lin, Y., & Tung, K. (2013). Intrusion Detection System: A comprehensive review,

Journal of New York and Computer Applications, 36, pp. 16-24.

Lin W., & Lee D. (2012). Trace back attacks in cloud Pebbletrace botnet. In Proceedings of

the 2012 32
nd

 International Conference on Distributed Computing Systems

Workshops (ICDCSW), Macau, China, pp. 417–426.

Linora, J. A., & Barathy, M. N. (2014). Intrusion detection and prevention by using light

weight virtualization in web applications. International Journal of Computer Science

and Mobile Computing (IJCSMC)3(3), pp. 392-396. IEEE

Liu S., & Chen Y. (2010) Retrospective detection of malware attacks by cloud computing. In

Proceedings of the 2010 International Conference on Cyber-Enabled Distributed

Computing and Knowledge Discovery (CyberC), Huangshan, China pp. 510–517.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., & Leaf, D. (2011). NIST cloud

computing reference architecture. NIST Special Publication, 500, pp. 1-28.

172

Lopez, M. E. A. (2018). A monitoring and threat detection system using stream processing as

a virtual function for big data (Doctoral dissertation) Universidade Federal do Rio de

Janeiro.

Lo, C. C., Huang, C. C., & Ku, J. (2010, September). A cooperative intrusion detection

system framework for cloud computing networks. In 2010 39th International

Conference on Parallel Processing Workshops pp. 280-284. IEEE.

Lu, X., Yin, J., Xiong, N. N., Deng, S., He, G., & Yu, H. (2016). JTangCMS: An efficient

monitoring system for cloud platforms. Information Sciences, 370, pp. 402-423.

Lynn, R. (2011). Investigation of Efficient Unified Threat Management in Enterprise

Security.

Malav, S., Avinash, M. S., Satish, N. S., & Sandeep, S. C. (2016). Network security using

IDS, IPS & Honeypot. International Journal of Recent Research in Mathematics

computer Science and Information Technology 2(2), pp. 27-30

Marsico, P. J. (2015). U.S. Patent No. 9,083,680. Washington, DC: U.S. Patent and

Trademark Office.

Martin, A. (2014, December 24). ‗Rackspace knocked offline by huge DDoS attack knocked-

offline-huge-DDoS-attack‘. We Live Security. Retrieved from

Martinez, F. R., & Pulier, E. (2015). U.S. Patent No. 9,069,599. Washington, DC: U.S. Patent

and Trademark Office.

Maynard, P., McLaughlin, K., & Haberler, B. (2014). Towards Understanding Man-In-The-

Middle Attacks on IEC 60870-5-104 SCADA Networks. Paper presented at

International Symposium for ICS & SCADA Cyber Security Research (ICS-CSR), St

Polten, Austria.

Mazzariello, C., Bifulco, R., & Canonico, R. (2010). Integrating a Network IDS into an Open

Source Cloud Computing Environment. Sixth International Conference on

Information Assurance and Security pp. 265-270.

McDougal, M. D., Lee, J. J., & Gilmore, W. L. (2014). U.S. Patent No. 8,914,882.

Washington, DC: U.S. Patent and Trademark Office.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.

Merlo, A., Migliardi, M., & Spadaccini, E. (2016). Balancing delays and energy consumption

in IPS-enabled networks. 2016 30th International Conference on Advanced

Information Networking and Applications Workshops (WAINA) pp. 267-272.

Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., & Payne, B., (2015). Evaluating

computer intrusion detection systems: A survey of common practices. ACM

Computing Surveys (CSUR), 48(1), pp. 12.

Modi, C.N., Patel, D.R., Patel, A., & Muttukrishnan, R. (2012). Bayesian Classifier and Snort

based network intrusion detection system in cloud computing. 2012 Third

173

International Conference on Computing, Communication and Networking

Technologies (ICCCNT’12), pp. 1-7.

Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., & Rajarajan, M. (2013). A survey of

intrusion detection techniques in Cloud, Journal of Network and Computer

Applications, 36, pp. 42-57.

Montes, J., Sánchez, A., Memishi, B., Pérez, M. S., & Antoniu, G. (2013). GMonE: A

complete approach to cloud monitoring. Future Generation Computer Systems, 29(8),

pp. 2026-2040.

Morris, S.L.A. (2013) An Investigation into the identification, reconstruction, and evidential

value of thumbnail cache file fragments in unallocated space PhD Thesis. Cranfield

University, Shrivenham.

Mosbah M., Sol, H., Alnashar., & El-Nasr M., (2014). Cloud computing framework for

solving Egyptian Higher Education. In: 2014 Fourth International Conference on

Advances in Computing and Communications pp. 208–213, IEEE.

Mugenda, O. M., & Mugenda, A. G.(2003). Research methods.

Munassar, N. M. A., & Govardhan, A. (2010). A comparison between five models of

software engineering. International Journal of Computer Science Issues (IJCSI), 7(5),

pp. 94.

Muthurajkumar, S., Kulothungan, K., Vijayalakshmi, M., Jaisankar, N., & Kannan, A.

(2013). A rough set based feature selection algorithm for effective intrusion detection

in a cloud model. Proceedings of the international conference on advances in

communication, network, and computing pp. 8–13.

Naik, N. (2015, October). Fuzzy inference based intrusion detection system: FI-Snort. In

2015 IEEE International Conference on Computer and Information Technology;

Ubiquitous Computing and Communications; Dependable, Autonomic and Secure

Computing; Pervasive Intelligence and Computingpp. 2062-2067. IEEE.

Naik, N., & Jenkins, P. (2016, August). Enhancing windows firewall security using fuzzy

reasoning. In: 2016 IEEE 14
th

 Intl Conf on Dependable, Autonomic and Secure

Computing, 14
th

 Intl Conf on Pervasive Intelligence and Computing, 2
nd

 Intl Conf on

Big Data Intelligence and Computing and Cyber Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech) pp. 263-269 IEEE.

Newman, R. C. (2009). Computer security: Protecting digital resources. Jones & Bartlett

Publishers.

Noehr, J. (2011) ‗Denial of service attack.‘‘ [Blog] Bit bucket. Retrieved from:

https://blog.bitbucket.org/2011/06/06/denial-of-service-attack.

Nurika, O., Aminz, A., Rahman, A., & Zakaria, M. (2012). Review of various firewall

deployment models. In: Proceedings of the International Conference on Computer

and Information Sciencepp. 825–829.

174

Ogweno, K. L., Oteyo, O. E., & Henry, D. O. (2014). Honeypot Intrusion Detection System.

International Journal of Engineering Inventions4(5), pp. 28-41.

Oliveira, T., Thomas, M., & Espadanal, M. (2014). Assessing the determinants of cloud

computing adoption: An analysis of the manufacturing and services sectors.

Information & Management, 51(5), pp. 497-510.

Opara-Martins, J., Sahandi, R., & Tian, F. (2014, November). Critical review of vendor lock-

in and its impact on adoption of cloud computing. In International Conference on

Information Society (i-Society 2014) pp. 92-97. IEEE

Paganini, P. (2014, December 26). ‗Lizard Squad took down again Sony PSN and Xbox Live

networks.Security Affairs.Retrived from

Pandeeswari, N., & Kumar, G. (2016). Anomaly detection system in cloud environment using

fuzzy clustering based ANN. Mobile Networks and Applications, 21(3), pp. 494-505.

Papp, D., Ma, Z., & Buttyan, L. (2015). Embedded systems security: Threats, vulnerabilities,

and attack taxonomy. In Privacy, Security and Trust (PST), 2015 13
th

 Annual

Conference pp. 145-152 IEEE.

Patel, A., Taghavi, M., Bakhtiyari, K., & Ju‘nior, C. (2013). An intrusion detection and

prevention system in Cloud Computing: A systematic overview. Journal of Network

and Computer Applications, 36,pp. 25-41.

Patel, K. (2013). Security survey for cloud computing: Threats & existing IDS/IPS

techniques, International Conference on control, Communication and Computer

Technologypp. 5.

Patel, S. K., & Sonker, A. (2016). Rule-based network intrusion detection system for port

scanning with efficient port scan detection rules using snort. International Journal of

Future Generation Communication and Networking, 9(6), pp. 339-350.

Pearson, S. (2013). Privacy, security, and trust in cloud computing. In: Privacy and Security

for Cloud Computingpp. 3-42 Springer, London.

Pino, R. E., & Kott, A. (2014). Neuromorphic computing for cognitive augmentation in cyber

defense. In: Cybersecurity Systems for Human Cognition Augmentation pp. 19-45

Springer, Cham.

Puthal, D., Sahoo, B. P. S., Mishra, S., & Swain, S. (2015, January). Cloud computing

features, issues, and challenges: a big picture. In: Computational Intelligence and

Networks (CINE), 2015 International Conference on pp. 116-123 IEEE.

Quah, M., Y., & Rohm, U. (2013). User awareness and policy compliance of data privacy in

cloud computing. In: Proceedings of the First Australasian Web Conference-Volume

144, pp. 3-12. Australian Computer Society, Inc.

Ramachandran, M., & Chang, V. (2014). Financial software as a service: A paradigm for risk

modelling and analytics. International Journal of Organizational and Collective

Intelligence, 4(3).

175

Ramachandran, M., Chang, V., & Li, C. S. (2015). The improved cloud computing adoption

framework to deliver secure services. In: Proceedings of ESaaSA 2015-2
nd

International Workshop on Emerging Software as a Service and Analytics, In

conjunction with the 5
th

 International Conference on Cloud Computing and Services

Science-CLOSER 2015 pp. 73-79.

Rashid, F. Y. (2014). ‗How hackers target cloud services for Bitcoin profit‘. Security Week.

Retrieved from: http://www.securityweek.com.

Rebahi, Y., Hohberg, S., Shi, L., Parreira, B. M., Kourtis, A., Comi, P., & Ramos, A. (2015,

December). Virtual security appliances: the next generation security. In 2015

International Conference on Communications, Management and Telecommunications

(ComManTel) pp. 103-110. IEEE.

Reilly, D., Wren, C., & Berry, T. (2010) Cloud computing: Forensic challenges for law

enforcement. International Conference for Internet Technology and Secured

Transactions (ICITST),pp. 1–7.

Riaz, A., Ahmad, H. F., Kiani, A. K., Qadir, J., Ur Rasool, R. A. I. H. A. N., & Younis, U.

(2017). Intrusion Detection Systems in Cloud Computing: A contemporary review of

techniques and solutions. Journal of Information Science & Engineering, 33(3).

Ridho, M. F. (2014). Analysis and evaluation Snort, Bro, and Suricata as an Intrusion

Detection System based on Linux server (Doctoral dissertation: Universitas

Muhammadiyah Surakarta).

Rittinghouse, J. W., & Ransome, J. F. (2016). Cloud Computing: Implementation,

Management, and Security. CRC Press.

Sanjana, T., & Shaveta. G, (2011). Comparative analysis of software development life cycle

models, IJCST 2(4), pp. 536-539

Saswade, N., Bharadi, V., & Zanzane, Y. (2016). Virtual machine monitoring in cloud

computing. Procedia Computer Science, 79, 135-142.

Scarfone, K., & Mell, P. (2012). Guide to Intrusion Detection and Prevention Systems (IDPS)

(Draft) (NIST Special Publication 800-94 Rev. 1.

Sen, J. (2015). Security and privacy issues in cloud computing. In: Cloud Technology:

Concepts, Methodologies, Tools, and Applications pp. 1585-1630 IGI Global.

Shah, J. (2015). Implementation and performance analysis of firewall on open switch.

Conducted at the Department of Network Architectures and Network Services,

Faculty of Informatics Technical University Munich, 29.

Shah, S., & Mehtre, B. M. (2015). An overview of vulnerability assessment and penetration

testing techniques. Journal of Computer Virology and Hacking Techniques, 11(1), pp.

27-49.

Shawish, A., & Salama, M. (2014). Cloud computing: paradigms and technologies. In Inter-

cooperative collective intelligence: Techniques and applications (pp. 39-67).

Springer, Berlin, Heidelberg.

176

Shea, R., Wang, F., Wang, H., & Liu, J. (2014). A deep investigation into network

performance in virtual machine based cloud environments. In: INFOCOM, 2014

Proceedings pp. 1285-1293. IEEE.

Singh, K., Guntuku, S. C., Thakur, A., & Hota, C. (2014). Big data analytics framework for

peer-to-peer botnet detection using random forests. Inform Sci, 278, pp. 488–497.

Singhal, A., & Ou, X. (2017). Security risk analysis of enterprise networks using probabilistic

attack graphs. In: Network Security Metrics pp. 53-73 Springer, Cham.

Snapp, S. R., Brentano, J., Dias, G., Goan, T. L., Heberlein, L. T., Ho, C. L., & Levitt, K. N.

(2017). DIDS (Distributed Intrusion Detection System)-Motivation, Architecture, and

An Early Prototype.

Sochor, T., & Zuzcak, M. (2014). Study of internet threats and attack methods using

Honeypots and Honeynets. In: International Conference on Computer Networks pp.

118-127. Springer, Cham.

Sodhi, B., & Prabhakar T. (2011).A cloud architecture using smart nodes. In: Proceedings of

the 2011 IEEE Asia-Pacific Services Computing Conference (APSCC) pp. 116–123,

Jeju Island, Korea.

Souley, B., & Abubakar, H. (2018). A captcha–based intrusion detection model. Int. J. Softw.

Eng. Appl, 9(1), pp. 29-40.

Sqalli, H., Al-saeedi, M., Binbeshr F., & Siddiqui M., (2012). UCloud: A simulated Hybrid

Cloud for a university environment. In: 2012 IEEE 1
st
 International Conference on

Cloud Networking (CLOUDNET) pp. 170–172 IEEE.

Sridhar, S. (2016). Cloud computing. An International Journal of Security, Privacy and Trust

Management (IJSPTM),4(1), pp. 31-44.

Stephens, G. D., & Maloof, M. A. (2014). U.S. Patent No. 8,707,431. Washington, DC: U.S.

Patent and Trademark Office.

Stergiou, C., Psannis, K. E., Kim, B. G., & Gupta, B. (2018). Secure integration of IoT and

cloud computing. Future Generation Computer Systems, 78, pp. 964-975.

Strohmeier, M., Lenders, V., & Martinovic, I. (2014). On the security of the automatic

dependent surveillance-broadcast protocol. IEEE Communications Surveys &

Tutorials, 17(2), pp. 1066-1087.

Syujak, A. R. (2012). Deteksi Dan Pencegahan Flooding Data Pada Jaringan Komputer

(Doctoral dissertation, Universitas Muhammadiyah Surakarta).

Szefer J., & Lee R., (2012).Architectural support for hypervisor-secure virtualization.

SIGARCH Comput.40, pp. 437–450.

Taha, A., & Hadi, A. S. (2019). Anomaly detection methods for categorical data: A review.

ACM Computing Surveys (CSUR), 52(2), pp. 38.

177

Tao, F., Cheng, Y., Da Xu, L., Zhang, L., & Li, B. H. (2014). CCI-CMfg: Cloud computing

and the Internet of Things-based cloud manufacturing service system. IEEE

Transactions on Industrial Informatics, 10(2), pp. 1435-1442.

Theoharidou, M., Papanikolaou, N., Pearson, S., & Gritzalis, D. (2013, December). Privacy

risk, security, accountability in the cloud. In Cloud Computing Technology and

Science (CloudCom), 2013 IEEE 5
th

 International Conference on (1, pp. 177-184).

IEEE.

Vance, A., Lowry, P., & Eggett, D., (2015).Increasing accountability through the user

interface design artifacts: A new approach to addressing the problem of access-policy

violations.

Vaquero, L., (2011). EduCloud: PaaS versus IaaS cloud usage for an advanced computer

science course. IEEE Transactions on Education, 54 (4), pp.590–598.

Varadharajan, V., & Tupakula, U. (2014). Security as a service model for cloud environment.

IEEE Transactions on Network and Service Management, 11(1), pp. 60-75.

Veerman, G., & Oprea, R. (2012). Database SQL Injections Detection & Protection.

University van Amsterdam.

Velte, T., Velte, J., & Elsenpeter, C. (2010). Cloud computing: A practical approach (pp.

44). New York: McGraw-Hill.

Vieira, K., Schulter, A., Carlos, B., Westphall, C., & Westphall, M. (2010). Intrusion

detection for grid and cloud computing, IEEE Computer Society, pp. 38-43

Vieira, K., Schulter, A., Westphall, C., & Westphall, C. (2009). Intrusion detection for grid

and cloud computing. IT Prof Mag, 4, pp. 38–43.

Vijayarani, D. S., & Sylviaa, M. M. (2015). Intrusion Detection System: International

Journal of Security, Privacy and Trust Management (IJSPTM), 4(1), pp. 31-44.

Wahlgren, G., Bencherifa, K., & Kowalski, S. (2013). A framework for selecting IT security

risk management methods based on ISO27005. In MIC-CPE 2013: 6
th

 International

Conference on Communications, Propagation, and Electronics, Kenitra, Morocco,

pp. 1-3. Academy Publisher.

Wang, A., Guo, Y., Hao, F., Lakshman, T. V., & Chen, S. (2014, December). Scotch:

Elastically scaling up sdn control-plane using vswitch based overlay. In Proceedings

of the 10th ACM International on Conference on emerging Networking Experiments

and Technologies pp. 403-414. ACM.

Wang, L., & Jones, R. (2017). Big data analytics for network intrusion detection, a survey.

International Journal of Networks and Communications 7(1), pp. 24-31.

Wang, Y., Jodoin, P. M., Porikli, F., Konrad, J., Benezeth, Y., & Ishwar, P. (2014). CDnet

2014: an expanded change detection benchmark dataset. In Proceedings of the IEEE

conference on computer vision and pattern recognition workshops pp. 387-394.

178

Weidman, G. (2014). Penetration testing: a hands-on introduction to hacking. No Starch

Press.

Wool, A. (2004). A quantitative study of firewall configuration errors. Computer, 37(6), pp.

62–67.

Xia, Y., Liu, Y., Guan, H., Chen, Y., Chen, T., Zang, B., & Chen, H. (2015). Secure

outsourcing of virtual appliance. IEEE Transactions on Cloud Computing, 5(3), pp.

390-404.

Xing, T., Xiong, Z., Huang, D., & Medhi, D. (2014). SDN IPS: Enabling software-defined

networking based intrusion prevention system in clouds, 10th International

Conference on Network and Service Management (CNSM) and Workshop, pp. 308-

311.

Xiong, Z. (2014). An SDN-based IPS Development Framework in Cloud Networking

Environment (Doctoral dissertation, Arizona State University).

Xu, H., Zhou, Y., & Lyu, M. (2016, May). N-version obfuscation. In Proceedings of the 2
nd

ACM International Workshop on Cyber-Physical System Security pp. 22-33. ACM.

Yesugade, K. D., Avinash, M. S., Satish, N. S., Sandeep, S. C., & Malav, S. (2016).

Infrastructure Security Using IDS, IPS, and Honeypot. International Engineering

Research Journal (IERJ) 2(3), pp. 851-855.

Yevdokymenko, M. (2016). An adaptive algorithm for detecting and preventing attacks in

telecommunication networks. Third International Scientific-practical Conference

Problems of Infocommunications Science and Technology (PIC S&T) (2016), pp.

175-177 Kharkiv.

Zeus (2014) Bot Found Using Amazon‘s EC2 as C&C Server Available online:

http://www.theregister.co.uk/2009/12/09/amazon ec2 bot control channel/ accessed on

3rd June 2018.

Zhang, Q., Cheng, L., & Boutaba, R., (2010).Cloud computing: state-of-the-art and research

challenges. Journal of internet services and applications, 1(1), pp 7-18.

Zhang, Y., Juels, A., Reiter, M. K., & Ristenpart, T. (2014, November). Cross-tenant side-

channel attacks in PaaS clouds. In Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security pp. 990-1003. ACM.

Zhang, Z., Zhang, W., Wang, J., & Chen, X. (2014, April). An Effective Cloud-Based Active

Defense System against Malicious Codes. In Information and Communication

Technology-EurAsia Conference pp. 690-695. Springer, Berlin, Heidelberg.

Zhao, S., & Medhi, D. (2017). Application-aware network design for Hadoop MapReduce

optimization using software-defined networking. IEEE Transactions on Network and

Service Management, 14(4), pp. 804-816.

http://www.theregister.co.uk/2009/12/09/amazon%20ec2%20bot%20control%20channel/

179

Zissis, D., & Lekkas, D. (2012). Addressing cloud computing security issues. Future

Generation computer systems, 28(3), 583-592.

Zou W., Zhang W., Qiang W. and Guofu X. (2013). Design and implementation of a trusted

monitoring framework for cloud platforms," Future Generation Computer System.

vol. 29, 2013, pp. 2092-2102.

180

APPENDICES

Appendix I: Evaluation Form

Title: A model for Detecting Information Technology Infrastructure Policy Violations in

a Cloud

Model Name: POVIDE

Evaluator‘s Name: Ruth Anyango Oginga

Date:

Policy Violation Detection Model Agreed Disagree Neutral

POVIDE Model has the ability to detect and block the

threats in real time

The model solves the issues of false positive

The set of rules are not manually configured

POVIDE Model has the ability to detect and react to

encrypted threats

The model scans the network for the open port and blocks

IP of open ports

The model does not require Human intervention once the

attacks have been detected

The POVIDE Model monitors the logins and does not

allow unauthorized access

181

Appendix II: Letter of Introduction

182

Appendix III: Authorization letter from NACOSTI

183

Appendix IV: Permit from NACOSTI

184

Appendix V: Sample code

Appendix V.1 POVIDE snort configuration

Custom VRT Rule Packages Snort.conf for Povide Model

Setup the network addresses you are protecting

Internal subnet for povide network

ipvar HOME_NET 192.168.60.1/24

Set up the external network addresses. Leave as "any" in most situations

ipvar EXTERNAL_NET any

List of DNS servers on your network

ipvar DNS_SERVERS $HOME_NET

List of SMTP servers on your network

ipvar SMTP_SERVERS $HOME_NET

List of web servers on your network

ipvar HTTP_SERVERS $HOME_NET

List of sql servers on your network

ipvar SQL_SERVERS $HOME_NET

List of telnet servers on your network

ipvar TELNET_SERVERS $HOME_NET

List of ssh servers on your network

ipvar SSH_SERVERS $HOME_NET

List of ftp servers on your network

ipvar FTP_SERVERS $HOME_NET

List of sip servers on your network

ipvar SIP_SERVERS $HOME_NET

List of ports you run web servers on

portvar HTTP_PORTS

[80,81,311,383,591,593,901,1220,1414,1741,1830,2301,2381,2809,3037,3128,3702,4343,48

48,5250,6988,7000,7001,7144,7145,7510,7777,7779,8000,8008,8014,8028,8080,8085,8088,

8090,8118,8123,8180,8181,8243,8280,8300,8800,8888,8899,9000,9060,9080,9090,9091,944

3,9999,11371,34443,34444,41080,50002,55555]

List of ports you want to look for SHELLCODE on.

portvar SHELLCODE_PORTS !80

List of ports you might see oracle attacks on

portvar ORACLE_PORTS 1024:

185

List of ports you want to look for SSH connections on:

portvar SSH_PORTS 22

List of ports you run ftp servers on

portvar FTP_PORTS [21,2100,3535]

List of ports you run SIP servers on

portvar SIP_PORTS [5060,5061,5600]

List of file data ports for file inspection

portvar FILE_DATA_PORTS [$HTTP_PORTS,110,143]

List of GTP ports for GTP preprocessor

portvar GTP_PORTS [2123,2152,3386]

other variables, these should not be modified

ipvar AIM_SERVERS

[64.12.24.0/23,64.12.28.0/23,64.12.161.0/24,64.12.163.0/24,64.12.200.0/24,205.188.3.0/24,2

05.188.5.0/24,205.188.7.0/24,205.188.9.0/24,205.188.153.0/24,205.188.179.0/24,205.188.24

8.0/24]

var RULE_PATH /etc/snort/rules

var SO_RULE_PATH /etc/snort/so_rules

var PREPROC_RULE_PATH /etc/snort/preproc_rules

Set the absolute path appropriately

var WHITE_LIST_PATH /etc/snort/rules

var BLACK_LIST_PATH /etc/snort/rules

Stop generic decode events:

configdisable_decode_alerts

Stop Alerts on experimental TCP options

configdisable_tcpopt_experimental_alerts

Stop Alerts on obsolete TCP options

configdisable_tcpopt_obsolete_alerts

Stop Alerts on T/TCP alerts

configdisable_tcpopt_ttcp_alerts

Stop Alerts on all other TCPOption type events:

configdisable_tcpopt_alerts

Stop Alerts on invalid ip options

configdisable_ipopt_alerts

Alert if value in length field (IP, TCP, UDP) is greater thelength of the packet

186

configenable_decode_oversized_alerts

Same as above, but drop packet if in Inline mode (requires

enable_decode_oversized_alerts)

configenable_decode_oversized_drops

Configure IP / TCP checksum mode

configchecksum_mode: all

Configure PCRE match limitations

configpcre_match_limit: 3500

configpcre_match_limit_recursion: 1500

config detection: search-method ac-split search-optimize max-pattern-len 20

Per Packet latency configuration

#config ppm: max-pkt-time 250, \

fastpath-expensive-packets, \

pkt-log

Per Rule latency configuration

#config ppm: max-rule-time 200, \

threshold 3, \

suspend-expensive-rules, \

suspend-timeout 20, \

rule-log alert

ConfigurePerf Profiling for debugging

#configprofile_rules: print all, sort avg_ticks

#configprofile_preprocs: print all, sort avg_ticks

configpaf_max: 16000

path to dynamic preprocessor libraries

dynamicpreprocessor directory /usr/lib64/snort-2.9.12_dynamicpreprocessor/

path to base preprocessor engine

dynamicengine /usr/lib64/snort-2.9.12_dynamicengine/libsf_engine.so

path to dynamic rules libraries

dynamicdetection directory /usr/local/lib/snort_dynamicrules

Step #5: Configure preprocessors

Does nothing in IDS mode

preprocessor normalize_ip4

187

preprocessornormalize_tcp: ipsecn stream

preprocessor normalize_icmp4

preprocessor normalize_ip6

preprocessor normalize_icmp6

preprocessor frag3_global: max_frags 65536

preprocessor frag3_engine: policy windows detect_anomaliesoverlap_limit 10

min_fragment_length 100 timeout 180

preprocessor stream5_global: track_tcp yes, \

track_udp yes, \

track_icmp no, \

max_tcp 262144, \

max_udp 131072, \

max_active_responses 2, \

min_response_seconds 5

preprocessor stream5_tcp: log_asymmetric_traffic no, policy windows, \

detect_anomalies, require_3whs 180, \

overlap_limit 10, small_segments 3 bytes 150, timeout 180, \

ports client 21 22 23 25 42 53 79 109 110 111 113 119 135 136 137 139 143 \

 161 445 513 514 587 593 691 1433 1521 1741 2100 3306 6070 6665 6666 6667 6668

6669 \

 7000 8181 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779, \

 ports both 80 81 311 383 443 465 563 591 593 636 901 989 992 993 994 995 1220 1414

1830 2301 2381 2809 3037 3128 3702 4343 4848 5250 6988 7907 7000 7001 7144 7145

7510 7802 7777 7779 \

 7801 7900 7901 7902 7903 7904 7905 7906 7908 7909 7910 7911 7912 7913 7914

7915 7916 \

 7917 7918 7919 7920 8000 8008 8014 8028 8080 8085 8088 8090 8118 8123 8180

8243 8280 8300 8800 8888 8899 9000 9060 9080 9090 9091 9443 9999 11371 34443 34444

41080 50002 55555

preprocessor stream5_udp: timeout 180

preprocessorhttp_inspect: global iis_unicode_mapunicode.map 1252 compress_depth 65535

decompress_depth 65535

preprocessorhttp_inspect_server: server default \

http_methods { GET POST PUT SEARCH MKCOL COPY MOVE LOCK UNLOCK

NOTIFY POLL BCOPY BDELETE BMOVE LINK UNLINK OPTIONS HEAD DELETE

TRACE TRACK CONNECT SOURCE SUBSCRIBE UNSUBSCRIBE PROPFIND

PROPPATCH BPROPFIND BPROPPATCH RPC_CONNECT PROXY_SUCCESS

BITS_POST CCM_POST SMS_POST RPC_IN_DATA RPC_OUT_DATA

RPC_ECHO_DATA } \

chunk_length 500000 \

server_flow_depth 0 \

client_flow_depth 0 \

post_depth 65495 \

oversize_dir_length 500 \

max_header_length 750 \

max_headers 100 \

max_spaces 200 \

188

small_chunk_length{ 10 5 } \

ports { 80 81 311 383 591 593 901 1220 1414 1741 1830 2301 2381 2809 3037 3128 3702

4343 4848 5250 6988 7000 7001 7144 7145 7510 7777 7779 8000 8008 8014 8028 8080

8085 8088 8090 8118 8123 8180 8181 8243 8280 8300 8800 8888 8899 9000 9060 9080

9090 9091 9443 9999 11371 34443 34444 41080 50002 55555 } \

non_rfc_char{ 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 } \

enable_cookie \

extended_response_inspection \

inspect_gzip \

normalize_utf \

unlimited_decompress \

normalize_javascript \

apache_whitespace no \

ascii no \

bare_byte no \

directory no \

double_decode no \

iis_backslash no \

iis_delimiter no \

iis_unicode no \

multi_slash no \

utf_8 no \

u_encode yes \

webroot no

ONC-RPC normalization and anomaly detection

preprocessorrpc_decode: 111 32770 32771 32772 32773 32774 32775 32776 32777 32778

32779 no_alert_multiple_requestsno_alert_large_fragmentsno_alert_incomplete

Back Orifice detection.

preprocessorbo

FTP / Telnet normalization and anomaly detection.

preprocessorftp_telnet: global inspection_typestatefulencrypted_traffic no check_encrypted

preprocessorftp_telnet_protocol: telnet \

ayt_attack_thresh 20 \

normalize ports { 23 } \

detect_anomalies

preprocessorftp_telnet_protocol: ftp server default \

def_max_param_len 100 \

ports { 21 2100 3535 } \

telnet_cmds yes \

ignore_telnet_erase_cmds yes \

ftp_cmds{ ABOR ACCT ADAT ALLO APPE AUTH CCC CDUP } \

ftp_cmds{ CEL CLNT CMD CONF CWD DELE ENC EPRT } \

ftp_cmds{ EPSV ESTA ESTP FEAT HELP LANG LIST LPRT } \

ftp_cmds{ LPSV MACB MAIL MDTM MIC MKD MLSD MLST } \

ftp_cmds{ MODE NLST NOOP OPTS PASS PASV PBSZ PORT } \

ftp_cmds{ PROT PWD QUIT REIN REST RETR RMD RNFR } \

ftp_cmds{ RNTO SDUP SITE SIZE SMNT STAT STOR STOU } \

189

ftp_cmds{ STRU SYST TEST TYPE USER XCUP XCRC XCWD } \

ftp_cmds{ XMAS XMD5 XMKD XPWD XRCP XRMD XRSQ XSEM } \

ftp_cmds{ XSEN XSHA1 XSHA256 } \

alt_max_param_len 0 { ABOR CCC CDUP ESTA FEAT LPSV NOOP PASV PWD QUIT

REIN STOU SYST XCUP XPWD } \

alt_max_param_len 200 { ALLO APPE CMD HELP NLST RETR RNFR STOR STOU

XMKD } \

alt_max_param_len 256 { CWD RNTO } \

alt_max_param_len 400 { PORT } \

alt_max_param_len 512 { SIZE } \

chk_str_fmt{ ACCT ADAT ALLO APPE AUTH CEL CLNT CMD } \

chk_str_fmt{ CONF CWD DELE ENC EPRT EPSV ESTP HELP } \

chk_str_fmt{ LANG LIST LPRT MACB MAIL MDTM MIC MKD } \

chk_str_fmt{ MLSD MLST MODE NLST OPTS PASS PBSZ PORT } \

chk_str_fmt{ PROT REST RETR RMD RNFR RNTO SDUP SITE } \

chk_str_fmt{ SIZE SMNT STAT STOR STRU TEST TYPE USER } \

chk_str_fmt{ XCRC XCWD XMAS XMD5 XMKD XRCP XRMD XRSQ } \

chk_str_fmt{ XSEM XSEN XSHA1 XSHA256 } \

cmd_validity ALLO <int [char R int] > \

cmd_validity EPSV < [{ char 12 | char A char L char L }] > \

cmd_validity MACB < string > \

cmd_validity MDTM < [date nnnnnnnnnnnnnn[.n[n[n]]]] string > \

cmd_validity MODE < char ASBCZ > \

cmd_validity PORT <host_port> \

cmd_validity PROT < char CSEP > \

cmd_validity STRU < char FRPO [string] > \

cmd_validity TYPE < { char AE [char NTC] | char I | char L [number] } >

preprocessorftp_telnet_protocol: ftp client default \

max_resp_len 256 \

bounce yes \

ignore_telnet_erase_cmds yes \

telnet_cmds yes

SMTP normalization and anomaly detection.

preprocessorsmtp: ports { 25 465 587 691 } \

inspection_typestateful \

 b64_decode_depth 0 \

qp_decode_depth 0 \

bitenc_decode_depth 0 \

uu_decode_depth 0 \

log_mailfrom \

log_rcptto \

log_filename \

log_email_hdrs \

normalizecmds \

normalize_cmds{ ATRN AUTH BDAT CHUNKING DATA DEBUG EHLO EMAL ESAM

ESND ESOM ETRN EVFY } \

normalize_cmds{ EXPN HELO HELP IDENT MAIL NOOP ONEX QUEU QUIT RCPT

RSET SAML SEND SOML } \

190

normalize_cmds { STARTTLS TICK TIME TURN TURNME VERB VRFY X-ADAT X-

DRCP X-ERCP X-EXCH50 } \

normalize_cmds{ X-EXPS X-LINK2STATE XADR XAUTH XCIR XEXCH50 XGEN

XLICENSE XQUE XSTA XTRN XUSR } \

max_command_line_len 512 \

max_header_line_len 1000 \

max_response_line_len 512 \

alt_max_command_line_len 260 { MAIL } \

alt_max_command_line_len 300 { RCPT } \

alt_max_command_line_len 500 { HELP HELO ETRN EHLO } \

alt_max_command_line_len 255 { EXPN VRFY ATRN SIZE BDAT DEBUG EMAL

ESAM ESND ESOM EVFY IDENT NOOP RSET } \

alt_max_command_line_len 246 { SEND SAML SOML AUTH TURN ETRN DATA RSET

QUIT ONEX QUEU STARTTLS TICK TIME TURNME VERB X-EXPS X-LINK2STATE

XADR XAUTH XCIR XEXCH50 XGEN XLICENSE XQUE XSTA XTRN XUSR } \

valid_cmds{ ATRN AUTH BDAT CHUNKING DATA DEBUG EHLO EMAL ESAM

ESND ESOM ETRN EVFY } \

valid_cmds{ EXPN HELO HELP IDENT MAIL NOOP ONEX QUEU QUIT RCPT RSET

SAML SEND SOML } \

valid_cmds { STARTTLS TICK TIME TURN TURNME VERB VRFY X-ADAT X-DRCP

X-ERCP X-EXCH50 } \

valid_cmds{ X-EXPS X-LINK2STATE XADR XAUTH XCIR XEXCH50 XGEN

XLICENSE XQUE XSTA XTRN XUSR } \

 xlink2state { enabled }

Portscan detection.

preprocessorsfportscan: proto { all } memcap { 10000000 } sense_level { low }

ARP spoof detection

Preprocessors - ARP Spoof Preprocessor

preprocessorarpspoof

preprocessorarpspoof_detect_host: 192.168.40.1 f0:0f:00:f0:0f:00

SSH anomaly detection.

preprocessorssh: server_ports { 22 } \

autodetect \

max_client_bytes 19600 \

max_encrypted_packets 20 \

max_server_version_len 100 \

enable_respoverflow enable_ssh1crc32 \

enable_srvoverflowenable_protomismatch

SMB / DCE-RPC normalization and anomaly detectionpreprocessor dcerpc2: memcap

102400, events [co]

preprocessor dcerpc2_server: default, policy WinXP, \

detect [smb [139,445], tcp 135, udp 135, rpc-over-http-server 593], \

autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 1025:], \

smb_max_chain 3, smb_invalid_shares ["C$", "D$", "ADMIN$"]

DNS anomaly detection

191

preprocessordns: ports { 53 } enable_rdata_overflow

SSL anomaly detection and traffic bypass

preprocessorssl: ports { 443 465 563 636 989 992 993 994 995 7801 7802 7900 7901 7902

7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918

7919 7920 }, trustservers, noinspect_encrypted

SDF sensitive data preprocessor.

preprocessorsensitive_data: alert_threshold 25

SIP Session Initiation Protocol preprocessor

preprocessor sip: max_sessions 40000, \

ports { 5060 5061 5600 }, \

methods { invite \

cancel \

ack \

bye \

register \

options \

refer \

subscribe \

update \

join \

info \

message \

notify \

benotify \

do \

qauth \

sprack \

publish \

service \

unsubscribe \

prack }, \

max_uri_len 512, \

max_call_id_len 80, \

max_requestName_len 20, \

max_from_len 256, \

max_to_len 256, \

max_via_len 1024, \

max_contact_len 512, \

max_content_len 2048

IMAP preprocessor

preprocessorimap: \

ports { 143 } \

 b64_decode_depth 0 \

qp_decode_depth 0 \

bitenc_decode_depth 0 \

uu_decode_depth 0

192

POP preprocessor.

preprocessor pop: \

ports { 110 } \

 b64_decode_depth 0 \

qp_decode_depth 0 \

bitenc_decode_depth 0 \

uu_decode_depth 0

Modbus preprocessor.

preprocessormodbus: ports { 502 }

DNP3 preprocessor.

preprocessor dnp3: ports { 20000 } \

memcap 262144 \

check_crc

Reputation preprocessor.

preprocessor reputation: \

memcap 500, \

priority whitelist, \

nested_ip inner, \

whitelist $WHITE_LIST_PATH/white_list.rules, \

blacklist $BLACK_LIST_PATH/black_list.rules

Step #6: Configure output plugins

unified2

Recommended for most installs

output unified2: filename povidemerged.log, limit 128, nostamp, mpls_event_types,

vlan_event_types

output unified2: filename povide.log, limit 128

Additional configuration for specific types of installs

output alert_unified2: filename povide.alert, limit 128, nostamp

output log_unified2: filename povide.log, limit 128, nostamp

syslog

outputalert_syslog: LOG_AUTH LOG_ALERT

pcap

outputlog_tcpdump: povidetcpdump.log

metadata reference data. do not modify these lines

includeclassification.config

includereference.config

Step #7: Customize your rule set

193

Appendix V.2Writing POVIDE Snort Rules

NOTE: All categories are enabled in this conf file

site specific rules

include $RULE_PATH/povide/local.rules

include $RULE_PATH/povide/community.rules

include $RULE_PATH/povide/attack-responses.rules

include $RULE_PATH/povide/icmp.rules

include $RULE_PATH/povide/bad-traffic.rules

include $RULE_PATH/povide/exploit.rules

include $RULE_PATH/povide/urlhaus.rules

include $RULE_PATH/povide/file_identity.rules

include $RULE_PATH/povide/meterpreter.rules

Step #8: Customize your preprocessor and decoder alerts

decoder and preprocessor event rules

include $PREPROC_RULE_PATH/preprocessor.rules

include $PREPROC_RULE_PATH/decoder.rules

include $PREPROC_RULE_PATH/sensitive-data.rules

Appendix V.3POVIDE firewall configuration

sudoufw route allow in on eth0 out on eth1 to 192.168.171.0/24 from 192.168.3.0/24

route add -net 192.168.3.0/24 gw 192.168.171.4

sudoufw route allow in on enp0s8 out on enp0s9 from 192.168.3.0/24 to 192.168.171.0/24

Enable masquerading in povide to act as a router to enable traffic from internal subnet to

external network

sudoiptables -t nat -A POSTROUTING -o enp0s9 -j MASQUERADE

sudoiptables -A FORWARD -i enp0s8 -o enp0s9 -m state --state

RELATED,ESTABLISHED -j ACCEPT

sudoiptables -A FORWARD -i enp0s9 -o enp0s8 -j ACCEPT

Appendix V.4POVIDE detects and blocks attacks traffic
firewall-cmd --zone=public --add-masquerade –permanent

#-------------

LOCAL RULES

#-------------

#alert icmp any any -> $HOME_NET any (msg:"ICMP test"; sid:10000001; rev:001;)

alerticmp any any<> 192.168.171.8 any (msg: "Povide Packet found"; sid:10000001;)

alerttcp any any -> any 21 (msg: "Povide FTP Packet found"; sid:10000002;)

alerttcp any any -> any 22 (msg: "Povide SSH Packet found"; sid:10000003;)

alerttcp any any<> any 80 (msg: "Povide HTTP Packet found"; sid:10000004;)

#alert tcp any any<> any 443 (msg:"Povide possible attack traffic detected no actions taken";

classtype:trojan-activity; sid:100000023;)

194

alerttcp any any<> any 443 (msg:"possible attack traffic detected and blocked";

classtype:trojan-activity; react: block, msg; sid:10000005;)

#!/bin/bash

Appendix V.5 POVIDE scans the network and blocks open ports

ipresults="$(povide -sT 192.168.60.0/24 --exclude 192.168.60.60 |

awk '/^Povide scan report/{cHost=$5;}

 /open/ { split($1,a,"/"); result[cHost][a[1]]=""}

 END {

for (i in result) {

printf i;

for (j in result[i])

printf ",%s", j ;

print ""} }' |

sed -e 's/,/\t/' | awk '{print $1}')"

if [-n "$ipresults"]; then

ufw deny from $ipresults to any

ufw disable

ufw enable

echo "Povide Blocked IP: $ipresults and access denied by firewall" >> blocked.txt

fi

ufw allow from 192.168.60.91 to any

